My research interests involve studies of pharmacology and function of voltage-gated calcium channels and particularly T-type (low-voltage-activated, LVA) channels in peripheral and central sensory transmission. My research involves biophysical techniques to measure membrane currents (voltage clamp and current clamp recordings) from acutely dissociated rat sensory neurons and intact brain and spinal cord slices. We have cell lines available that express recombinant ion channel proteins which allow studies of the relationship between structure and function. At the system level, we directly examine the effects of calcium channel modulators on pain sensation following injection into peripheral receptive fields of sensory neurons in intact rats and rats with mechanically (chronic constrictive injury)- or metabolically (diabetic)-induced peripheral neuropathy, as well as knockout mice lacking T-type channels. Our future studies will investigate how modulation of T-type Ca2+ channels in sensory and CNS neurons affects their function and how different anesthetic, analgesic and anticonvulsant agents selectively target particular classes of voltage-gated ion channels. In particular, we are interested in testing new selective T-type channel blockers in vitro recordings from DRG, spinal cord and thalamic cells, as well as functional studies of nociception and anesthetic end points in vivo.

Our research is funded by NIH and ADA research grants.
Representative publications:


