Molecular and Cellular Physiology

Student in labResearch in Molecular and Cellular Physiology at UVA aims to elucidate the cellular and molecular mechanisms of basic biological phenomena and to understand the pathological alterations of these processes that result in disease.

Our research seeks to integrate insights gained at the molecular and cellular levels into the broader framework of organ function, with the goal of understanding the function of living systems at all levels.  This understanding is  based on knowledge of atomic and molecular structure and function.  Thus a modern molecular physiologist may investigate the function of the heart by cloning a membrane channel or transport protein, expressing it and studying its kinetics through patch clamping in a model cell system, while exploring the relationship between molecular structure and function through crystallography and spectroscopy.

We emphasize interdisciplinary systems approaches.  Consequently, members of our program are associated with many departments in basic sciences, clinical medicine, and in particular the Robert Berne Cardiovascular Research Center and Biomedical Engineering.

Faculty
  • Ai, Huiwang

    Spatiotemporal Regulation of Biological Signaling; Protein Engineering for Imaging, Diagnostics, and Therapeutics

  • Barrett, Paula Q.

    Regulation of low-voltage activated T-type Ca2+ channel activity by kinases and heterotrimeric G-proteins and their roles in physiological responses.

  • Bland, Michelle

    Molecular mechanisms linking inflammation and insulin signaling to control cell growth and metabolism

  • Bushweller, John H.

    Drug Development Targeting Transcription Drivers in Cancer; Structure/Function Studies of Transcription Factor Drivers in Cancer; Structural Studies of Membrane Proteins

  • Derewenda, Zygmunt S.

    Structure-function relationships in proteins

  • Felder, Robin A.

    Clinical Chemistry and Toxicology. Medical Automation Research. Neurotransmitters, cell surface receptors and intracellular second messengers.

  • French, Brent A.

    Novel Therapies for Treating and Preventing Ischemic Heart Disease

  • Gelfand, Bradley

    Blinding disease age-related macular degeneration, utilizing the tools of immunology, molecular biology, and engineering.

  • Guyenet, Patrice G.

    Neural control of blood pressure and respiration

  • Holmes, Jeffrey W.

    Healing after myocardial infarction, cardiac growth and remodeling, and image-based modeling and diagnosis.

  • Hsu, Ku-Lung

    Chemical Biology, Lipid Biochemistry, Medicinal Chemistry, and Mass Spectrometry

  • Isakson, Brant

    Translating our discoveries in the microcirculation to tangible benefits in patients.

  • Kasson, Peter M.

    Mechanisms of cell entry by influenza; Viral glycan recognition; drug resistance; molecular dynamics simulation; distributed computing.

  • Keller, Susanna R.

    Insulin signaling, insulin-regulated membrane trafficking and associated changes in cellular function and whole body physiology

  • Kendall, Melissa M.

    Bacterial cell signaling, host-pathogen interactions, intestinal pathogens

  • Kenworthy, Anne

    Architecture and function of biological membranes

  • Kramer, Christopher M.

    Cardiac magnetic resonance imaging, myocardial disease, atherosclerotic plaque imaging, peripheral arterial disease, hypertrophic cardiomyopathy

  • Laubach, Victor E.

    Understanding mechanisms of ischemia-reperfusion (IR) injury after lung transplantation such as vascular inflammation, diagnosis via molecular imaging, and identifying therapeutic targets for the prevention or treatment of IR injury.

  • Leitinger, Norbert

    Role of lipid oxidation products in inflammation and vascular immunology in atherosclerosis and diabetes

  • McNamara, Coleen A.

    Atherosclerosis, Obesity, Diabetes

  • Miller, Clint L.

    Genetic variation, Complex diseases, Coronary artery disease, Genomics, Epigenomics, Regulatory mechanisms, Vascular biology, Pharmacology and Physiology

  • Minor, Wladek

    Structure-Function Relationships in Macromolecules; Infectious Diseases and Drug Discovery; Bioinformatics and Big Data; Scientific
    Reproducibility

  • Nakamoto, Robert K.

    Structure-Function of Active Transporters

  • O’Rourke, Eyleen Jorgelina

    Obesity and Aging

  • Owens, Gary K.

    Identification of Factors and Mechanisms that Regulate the Stability of Late Stage Atherosclerotic Lesions and the Probability of Thromboembolic Events Including a Heart Attack or Stroke

  • Papin, Jason A.

    Systems biology, infectious disease, cancer, toxicology, metabolic engineering

  • Peirce-Cottler, Shayn M.

    Tissue Engineering and Regeneration, Computational Systems Biology, Vascular Growth and Remodeling, Stem Cell Therapies

  • Pornillos, Owen

    Structure and assembly of HIV Virus/host interactions; Structural biology of the innate immune system

  • Price, Richard J.

    Image Guided Drug and Gene Delivery for Neurodegeneration and Cancer; Focused Ultrasound and Immunotherapy; Arteriogenesis and Angiogenesis

  • Saucerman, Jeffrey J.

    Roles of complex signaling networks involved in the regulation of cardiovascular function and disease

  • Somlyo, Avril V.

    Novel signal transduction pathways in smooth muscles that regulate contractility and impact diseases of the vasculature, airway and gastrointestinal tract.

  • Sonkusare, Swapnil

    Microcirculation, vascular ion channels, calcium signaling mechanisms, endothelial cells, hypertension

  • Tamm, Lukas K.

    Biomembrane Structure and Function; Cell Entry of Enveloped Viruses; Neurosecretion by Exocytosis; Structure of Bacterial Pathogen Membrane Proteins; Lipid-Protein Interactions

  • Wiener, Michael C.

    Structure/function of integral membrane proteins; structural biophysics; enzymology and virology of ZMPSTE24; sparse-constraint structure determination; technology development

  • Wolf, Matthew J

    Identification of genes and pathways that cause or modify cardiac hypertrophy and heart failure.

  • Yan, Zhen

    Molecular and Signaling Mechanisms of Skeletal Muscle Plasticity

  • Yeager, Mark

    Cardiac Gap Junction Membrane Channels / IntegrinsWater Channels / Rotavirus / Reovirus / Retrovirus

  • Zimmer, Jochen

    Transport of biopolymers across biological membranes with a particular interest in polysaccharide and protein translocation.