Mechanisms of Eosinophil Degranulation in Allergic Disease

Lisa A. Spencer, PhD
Associate Professor
Gastrointestinal Eosinophilic Diseases Program (GEDP)
Mucosal Immunology Program (MIP)
GI and Liver Innate Immune Program (GALIIP)
University of Colorado School of Medicine

Disclosures

I have no financial interests or relationships to disclose.
Eosinophil Functions in Allergic Diseases

Tissue Damage, Repair and Remodeling
- Epithelial cell damage (ROS, cytotoxic granule prtns)
- Fibroblast activation
- ECM production
- Fibrosis
- Sm. muscle activation/contraction
- Angiogenesis

Host Defense
- ROS
- Cytotoxic granule proteins
- Extracellular DNA Traps

Cell Activation
- “Itch” response
- Eosinophil:Mast Cell Allergic Effector Unit (AEU)

Immunomodulation
- DC activation
- T cell polarization
- T cell recruitment

Humoral Immunity
- Plasma cell survival
- IgA class switching

Eosinophil-Derived Mediators

<table>
<thead>
<tr>
<th>Cationic Proteins</th>
<th>Cytokines</th>
<th>Chemokines</th>
<th>Growth Factors</th>
<th>Lipid Mediators</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
<td>IL-1β</td>
<td>Eotaxin-1 (CCL11)</td>
<td>NGF</td>
<td>LTE4</td>
</tr>
<tr>
<td>EPX</td>
<td>IL-2</td>
<td>GM-CSF</td>
<td>MCP-1 (CCL2)</td>
<td>PDGF</td>
</tr>
<tr>
<td>ECP</td>
<td>IL-3</td>
<td>SCF</td>
<td>MIP-1α (CCL3)</td>
<td>SCF</td>
</tr>
<tr>
<td>EDN</td>
<td>IL-4</td>
<td>TGF-α</td>
<td>RANTES (CCL5)</td>
<td>VEGF</td>
</tr>
<tr>
<td>IL-5</td>
<td>TGF-β</td>
<td>MCP-2 (CCL8)</td>
<td>HB-EGF-LBP</td>
<td>PGE2</td>
</tr>
<tr>
<td>IL-6</td>
<td>TNF-α</td>
<td>MCP-3 (CCL7)</td>
<td></td>
<td>IS-HETE</td>
</tr>
<tr>
<td>IL-8</td>
<td>TNF-β</td>
<td>MCP-4 (CCL33)</td>
<td>PAF</td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td>MDC (CCL22)</td>
<td>Thromboxane A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-11</td>
<td>MIP-1α (CCL9)</td>
<td>resolvins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12</td>
<td>MIP-3 (CCL23)</td>
<td>protectins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-13</td>
<td>Gro-α (CCL1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-16</td>
<td>SDF-1 (CCL12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-17</td>
<td>C10/C16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-18</td>
<td>IP-10 (CCL10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-25</td>
<td>TARC (CCL17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-23</td>
<td>Mig (CCL9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Human Eosinophils Maintain Preformed Stores of Diverse Cytokines Within Intracellular Granules

Adapted from LA Spencer Eosinophils in Health and Disease, eds. Lee and Rosenberg, Elsevier, 2014

Mechanisms of eosinophil degranulation
Piecemeal Degranulation (PMD)

1. Cell stimulus

2. Selective loading of granule-stored cytokines into vesicles

3. Cargo-loaded vesicles bud from intracellular granules

4. Granule-derived cargo is transported within secretory vesicles

5. Secretory vesicles fuse with plasma membrane and release granule-derived cargo.

Piecemeal Degranulation of Preformed, Granule-Store Cytokines

Formation of eosinophil sombrero vesicles (EoSVs)

Discrete packets of cytokine released extracellularly.

Cell membrane

Deconvolution and 3D rendering
Granule-Stored Cytokines Are Differentially Released from Human Blood Eosinophils Through Piecemeal Degranulation (PMD)

Eosinophil cytokine secretion within 30 minutes of stimulation

- **Pro-inflammatory stimulation**
 - Donor #1
 - Donor #2
 - Donor #3

- **Th1 stimulation**
 - Donor #1
 - Donor #2
 - Donor #3

Cytolysis with release of free granules

- Cluster of cell-free granules
- DNA strands
- Nuclear and plasma membrane dissolution
Cytolysis is cell death distinct from apoptosis or necrosis

<table>
<thead>
<tr>
<th>Anti-Fas</th>
<th>Heat</th>
<th>A23187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis</td>
<td>Necrosis</td>
<td>Cytolysis</td>
</tr>
</tbody>
</table>

Eosinophils Undergoing Cytolytic Cell Death
Expulse Cell-Free Granules

Ca^{2+} ionophore-elicited cytolysis of human blood eosinophils ex vivo

Arrows indicate cell-free granules

Eosinophils undergo Extracellular DNA Trap Cell Death (ETosis)

Free granules liberated from cytolytic eosinophils exhibit an intact delimiting membrane.
Cell-Free eosinophil granules express ligand-binding domains for IFN-γRα and CCR3

Might cell-free eosinophil granules respond to stimuli?

Cell-Free Eosinophil Granules Respond to Stimuli

Transient pH changes measured in cell-free granules stimulated with eotaxin

Ueki et al. Blood 2013;121:2074-2083
Stimulus-Induced Secretion of Cationic Proteins and Cytokines from Cell-Free Eosinophil Granules

- Secreted ECP
- IFN-γ
 - 100 ng/ml
 - 200 ng/ml
 - 400 ng/ml
- Eotaxin

Stimulus: Granule stimulus

Cytolysis with release of free granules

Differential Secretion
Tissue Damage, Repair and Remodeling
- Epithelial cell damage (ROS, cytotoxic granule proteins)
- Fibroblast activation
- ECM production
- Fibrosis
- Sm. muscle activation/contraction
- Angiogenesis

Host Defense
- ROS
- Cytotoxic granule proteins
- Extracellular DNA Traps

Cell Activation
- “Itch” response
- Eosinophil:Mast Cell Allergic Effector Unit (AEU)

Immunomodulation
- DC activation
- T cell polarization
- T cell recruitment

Humoral Immunity
- Plasma cell survival
- IgA class switching

Functions of Eosinophils in Allergic Diseases
Functions of Eosinophil Cell-Free Granules in Allergic Diseases

CLCs are associated with EETosis in human tissues

Frontal sinus, allergic

Colon, ulcerative colitis

Nasal polyps, ECRS
ETosis-mediated Charcot-Leyden crystal (CLC) formation

CLCs induce the secretion of IL-1β from primary human macrophages
Summary

- Eosinophil secretion is central to diverse effector functions of eosinophils in allergic diseases
- Eosinophils undergo *de novo* cytokine synthesis and secretion and also rapidly and differentially secrete cytokines from preformed granule stores
- Two main physiological mechanisms of secretion of preformed granule‐stored cytokines: 1) Piecemeal degranulation (PMD); and 2) Cytolysis with deposition of clusters of cell-free granules
- Cell-free granules deposited from cytolytic eosinophils maintain stimulus-dependent secretory competence; therefore *eosinophil secretory functions may continue to contribute to disease pathogenesis in the absence of intact eosinophils*
- Charcot-Leyden crystal (CLC) formation is associated with cytolytic eosinophil cell death and contribute to macrophage IL-1β secretion