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Allergic asthma (Th2) is a chronic inflammatory
disease of the airways

Chronic inflammatory disease of
the lung, affects over 300 million
people ~7.5% of adult population
(Braman Chest 2006, McCracken
JAMA 2017)

Symptoms: shortness of breath,
chest tightness, and bouts of
coughing or wheezing

Pathology

— Inflammation

— Goblet cell mucus production
— Smooth muscle thickening

— Reversible airway constriction
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Lung immunity to allergens
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Genome Wide Association Studies (GWAS) to understand the genetic basis of asthma
Low hanging fruit included IL33 and the IL33 receptor (IL1RL1/ST2)
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Ober. Carole. Annals of the American Thoracic Societv (2016): S85-S90.
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e NEW ENGLAND JOURNAL of MEDICINE

Efficacy and Safety of Itepekimab for Moderate-to-Severe Asthma

PHASE 2, MULTICENTER, RANDOMIZED TRIAL

296 Adults Placebo

with moderate-
to-severe

Every 2 wk for 12 wk

16 Participants 20 Participants 14 Participants

22% 27% 19%

OR (95% CI) as compared with placebo

0.42(0.20-0.88) 0.52 (0.26-1.06) 0.33 (0.15-0.70) |

30 Participants

41%

Event indicating
loss of asthma
control

Itepekimab led to a lower incidence of loss of asthma

control than placebo and improved lung function.

M.E. Wechsler et al. 10.1056/NEJMoa2024257 Copyright © 2021 Massachusetts Medical Society




Qutline

IL-33 is produced by dendritic cells and is involved in allergic sensitization in the lungs
to multiple types of allergens

IL-33 levels in Amish farm children are suppressed by their environment,
but Hutterite children IL-33 levels are determined by their genetics

IL-33 is produced by different lung cells in humans compared to mice.



Different stimuli promote development
of various T helper responses
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Signaling through FcyRIII diverts TLR-4
stimulated DCs toward DC™?

DCTh2

Immature DC

Bandukwala et al, (2007) JEM



Passive transfer of antigen specific IgG augments
Th2 inflammation upon antigen challenge
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What genes are regulating DC™?2 development?

C57Bl/6 Fcgr3-
OVA OVA-IC OVA OVA-IC

Irf4
o
33
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Bandukwala, et. al. JEM. 2007
Tjota, et, al. JCI. 2013
Williams, et al, Nature Comm 2013



Allergic responses can be triggered by a variety of structurally
diverse allergens with varying biological functions

Type | (enzymatic):
—) * Dust Mite

* Fungal Spores

* Pollen

Type Il (non-enzymatic):
 Animal Dander

Immune e |atex

complexes

meesm) * Ovalbumin
* Wheat Flour

Erwin and Platts-Mills (2005) Immunol Allergy Clin North Am



HDM extract targets multiple cellular pathways

FcyRIll (CD16)

<> B-glucan

Dectin-1

.. Dectin-2

MD2 mimic, .

Endotoxin HDM (O FcRy
@) glycans

TLR2/4

Bandukwala et al (2007) JEM
Tjota et al (2013) JCI

Protease Activated Mannose
Receptor (PAR) A %}Receptor (MR)
Der p3/9 A A . Der p1

Is HDM-mediated Th2 inflammation FcRy dependent?



HDM-mediated allergic airway inflammation is FcRy-dependent

FcRy*/-and FcRy™’"
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HDM upregulates IL-33 in BMDCs in an FcRy-dependent manner

Treated the cells

_ _ Isolated the RNA
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HDM-induced IL-33 upregulation in BMDCs is Dectin-2 dependent

Treated the cells

in_-/- Isolated the RNA
Generated Dectin-2 overnight with for GPCR

OVA, IC, or HDM

BMDCs

Dectin-27- BMDCs

Dectin-2 8.0-

@HDM —
FcRy 8lycans 6.0

4.0+

2.0-

0.0-

OVA IC HDM

Dectin 27/~ bones provided by N. Barrett



Stimulation of FcRy-containing receptors can lead to
increased DC expression of IRF4 resulting in
DC™2 skewing

FcRy containing receptor

Type Il i
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Bandukwala et al J. Exp Med. 2007
Tjota et al, J. Clin. Invest. 2013
Williams et al, Nature Comm 2013
Tjota et al, J. Allergy Clin Immun. 2014
Camacho, et al. JCl Insight, 2022
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IL-33 is produced by dendritic cells and is involved in allergic sensitization in the lungs
to multiple types of allergens

IL-33 levels in Amish farm children are suppressed by their environment,
but Hutterite children IL-33 levels are determined by their genetics

IL-33 is produced by different lung cells in humans compared to mice.



The Farm Effect: Early childhood exposure protects
against asthma and allergies

Erika von Mutius, JACI 2004



Amish farm children have a low asthma and atopy risk

compared to Hutterites farm children

Previous Studies Asthma Allergic _Sens_ltlzatlon
(skin prick)
Amish children 6-12 (Holbreich et al. 2012) 52% 7.2%
Hutterite children 6-10 (Motika et al. 2011) 21.3% 33.3%

* Anabaptist founder populations from Europe
* Large families

* Long nursing time

e Germanic farming diet

* Consume raw milk

* Vaccinated

* Cats and dogs not allowed in home

* No television/radio exposure

mage credit: http://static.guim.co.uk/sys- ° Chlldren Spend a |Ot Of tlme Outdoors

images/Guardian/Pix/pictures/2012/8/1/134383410280
6/Amish-A-Secret-Life-008.jpg

* No obesity in children

» High level of genetic similarity between the two founder populations (by
SNP analysis)



Farm environment and exposures differ between Amish and
Hutterite communities

Current Opinion in Immunology

Amish Hutterites
e Communal farms

* Family farms e |
* Traditional farming techniques * Farming highly .mechanlze.d
* Women and children not involved

 Women and children help farm in farming



Hypothesis

Amish children live in an environment that
reduces risk of allergic sensitization through
modulation of the immune response

Methods: Study Sample

* Collect blood from 30 Amish and 30 o
Hutterite children Datotal ) pncescha

* Determine the specific changes in SfT Wisconsin
peripheral blood leukocyte (PBL) Dakota e wletan
gene expression, cell phenotypes, \ebracks lowa G
and functions that could lead to ingis o O
reduced allergic sensitization.

* Tested the effect of house dustin a

mouse model of asthma

Kansas Missouri

Stein, Hrusch, Gozdz, et al. NEJM 2016



PBLs from Amish children produce less cytokine in

response to LPS

IL-4 IL-17
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* No difference observed in IL-10, IL-9, IL-13, IL-12p70, GM-CSF, MIP3A, IL-1B, IL-6, TNFa, IL-
28A, IL-23, or IFNy



Amish PBL have a globally dampened transcriptional response to LPS:

Conclusions:

Genes significantly different in Amish kid’s blood cells have a higher
Hutterite after LPS .
basal level of neutrophils and gene
_ transcription of innate genes in

50
I

neutrophils, but are hypo-responsive
o to innate stimulation.

Evidence of hyper-reactivity in a

Genes significantly different ”bOred” immune response in
n Amish pfterLPS Hutterite children?

57 FDR 1%

o o 3 40 Tregs may be directly involved in the
Amish LPS response (-log10 P values) . . .
suppression of the innate immune
cells in the Amish children.

Hutterite LPS response (-log10 P values)




Conclusions:

Effects of Amish environment on circulating immune cells:
Potential mechanisms for reduced asthma risk

Altered Innate Immunity

Amish R LT3
Environment ILTS
| .
I 1 Recent Emlgrated N ”Suppressive”
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v : Al
| I
TNF Y 'V
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gene expression
|
1CD28-null CD8+ T cells I
A7 R \ 1 CD45R0O+ICOS+
’// AN Tr
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‘b >“ s, < ~ TNFAIP3
e=-=--C-C A
IFN VIgE y
(T'h L 47 4 Stein, Hrusch, Gozdz, et al. NEIM 2016

Hrusch, Stein, et al. JACI 2019



PBLs from Amish children produce less [L-33

cytokine in response to LPS and at baseline
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At baseline, IL-33 was
the only cytokine that
was different between
the Amish and
Hutterite children



Lung immunity to allergens
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Genome Wide Association Studies (GWAS) have been
performed to understand the genetic basis of asthma

* EVE Consortium:
diverse ethnic
backgrounds in US
and Mexico, 2x1076
SNPs

s ks el

 GABRIEL
Consortium:
European subjects,
582,892 SNPs,
subjects from 23
studies

:: UChi.Ca-go
<’ Medicine

Ober. Carole. Annals of the American Thoracic Societv (2016): S85-S90.



SNPs associated to increased asthma risk are located upstream of the IL33 gene
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Bayesian fine-mapping quantifies uncertainty in variable selection
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Risk allele of GWAS SNP rs1888909 is associated with /L33 mRNA and IL-33 protein levels
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The 5 kb asthma-associated region contain important requlatory activity
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IL-33 is regulated by a causal SNP
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Qutline

IL-33 is produced by dendritic cells and is involved in allergic sensitization in the lungs
to multiple types of allergens

IL-33 levels in Amish farm children are suppressed by their environment,
but Hutterite children IL-33 levels are determined by their genetics

IL-33 is produced by different lung cells in humans compared to mice.



In the lungs, human IL33-reporter is expressed primarily in
endothelial cells

BAC (+) Lung

Human IL-33 Reporter




Deletion of the 5kb insulator region eliminates expression
in CD31+ MHC I+ microvascular endothelial cells

BAC (+) DEL-BAC (+)

Lyve-1/ : Lyve-1/
Eu-E;_pressmn 7 Co-expression




Deletion of the 5kb insulator region eliminates hlL-33-
reporter expression in tracheal basal epithelium and SMG




SNPs associated to increased asthma risk are located upstream of the IL33 gene
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F1 mouse

LungGENS

%@ =

GFP (murine 1/133 reporter) and Crimson (human /L33
reporter) are expressed by distinct populations in the lungs
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Allergen sensitization and challenge decreases human-IL-33
reporter expression, but not murine IL-33 reporter expression
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Crimson
(normalized to f2M)

IL-33 decreases human IL-33-reporter expression in
endothelial cells suggesting a negative feedback loop
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IL-33 decreases IL33 mMRNA expression in endothelial
cells suggesting a negative feedback loop
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Conclusions

We have identified a 5kb region that confers tissue-specific
expression of IL33

The 5kb region has insulator activity and contains GWAS SNPs that
affect its function

Human IL-33 is primarily expressed in endothelial cells, not epithelial
cells as in mice.

IL-33 negatively regulates its own expression in endothelial cells, and
this downregulation is dependent on the 5kb region



Qutline

IL-33 is produced by dendritic cells and is involved in allergic sensitization in the lungs
to multiple types of allergens

IL-33 levels in Amish farm children are suppressed by their environment,
but Hutterite children IL-33 levels are determined by their genetics

IL-33 is produced by different lung cells in humans compared to mice.
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Does rlL-33 downregulate /L33 transcription by
reducing chromatin accessibility at the /L33 locus?

HUVECs N
2-3 days for confluence Addition of 30ng/mL riL-33 ATAC-seq on untreated

riL-33 treated cells

Domenick Kennedy



Extracellular IL-33 does not alter accessibility at the /L33
locus
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Does extracellular IL-33 increases /L33 mRNA

turnover?
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Exogenous IL-33 treatment decreases nuclear /L33
MRNA stability in human endothelial cells

Human /L33 mRNA in HUVECs
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IL-33 decrease of human IL-33-reporter expression is
dependent on the 5kb insulator region
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Bayesian fine-mapping quantifies uncertainty in variable selection
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* Based on LD threshold with peak SNP

* Heuristic LD approach deterministically
chooses SNPs above certain LD threshold
with the lead SNP

* Limitations: arbitrary threshold, doesn’t
quantify uncertainty

Bayesian fine-mapping
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* Credible set based on SNP PIPs

* Bayesian fine-mapping probabilistically evaluates each

SNP’s causal evidence

* Posterior inclusion probability (PIP): the probability of

a SNP being causal

* 95% credible set: a set of SNPs that has 95% or greater
probability of containing at least one causal SNP



Bayesian fine-mapping quantifies uncertainty in variable selection
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SC-RNAseq demonstrate /L33 is abundantly expressed in
human lungs

Mast Cells

B Cells Al

Basal Cells Endothelial/Lymphatic Cells

Club Cells T/NKT Cells Gene: IL33

Fibroblasts Range
No Value
0.00 - 0.58

Ciliated Cells ' 0.58 - 0.79

: 0.79 - 1.00
AT1 Cells , 1.00 - 1.19

Macrophages 1.19-1.34

1.34 -1.51

1.51-1.70

Monocytes 1.70 - 1.98

Plasma Cells 1.98 -2.29
2.29 -3.71

AT2 Cells

Dendritic Cells

Reyfman et al., 2017



Basal lung cells downregulate /L33 mRNA as they
differentiate in ALl epithelial cultures in vitro
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Crimson (human /L33 reporter) is expressed largely by
non-hematopoietic cells in BAC (+) lungs

C BAC (-) Lung BAC (+) Lung

100 =

Ll 1
CD45 neg CD45 pos

80 = 74.1 25.4

SSC-A
SSC-A

Gated on Crjmson

Crimson+
575 ~

Crimson Crimson

BAC (+) CD45- Lung Cells BAC (+) CD45+ Lung Cells

Total=100 Total=100

@ 42.00% Lymphatic Endothelial Cells
[ 29.00% Vascular Endothelial Cells
Il 11.10% Fibroblasts

Hl 7.90% Epithelial Cells

I 10.00% Other

72.12% Alveolar Macrophages
8.63% Interstitial Macrophages
4.18% Neutrophils

3.06% Lymphocytes

1.07% Dendritic Cells

0.86% Eosinophils

10.08% Other
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New BAC Tg mice that make hIL-33

Exon 8
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Tissue Hu CD4 (HulL-33 reporter)  GFP (Mouse-IL33 reporter) Double positive?
Epithelial cells Neg ++++ None

Lym Endo ++++ + + (all GFP are also huCD4)
Vasc Endo + Neg None
Fibroblast Neg ++ None
Neutrophils ++++ Neg None
Eosinophils +/- Neg Noe

AM + Neg None
Intersitial Macs + Neg None

DC1 ++++ Neg None

DC2 +4+++ Neg None
Ly6C+ Mono +++ Neg None
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		Tissue		Hu CD4 (HuIL-33 reporter)		GFP (Mouse-IL33 reporter)		Double positive?

		Epithelial cells		 Neg		++++		None

		Lym Endo		++++		+		+ (all GFP are also huCD4)

		Vasc Endo		+		Neg		None

		Fibroblast		Neg		++		None



		Neutrophils		++++		Neg		None

		Eosinophils		+/-		Neg		Noe

		AM		+		Neg		None

		Intersitial Macs		+		Neg		None

		DC1		++++		Neg		None

		DC2		++++		Neg		None

		Ly6C+ Mono		+++		Neg		None








Neutrophils

mIL33-GFP

BAC(-)

mIL33+—]
0.26

A 4

hCD4-PE

BAC(+)

mIL33+ﬁ
0.020

IL33-GFP FMO

miL33+
0.27

hCDd+

hCD4-PE FMO

miL33+

0-39 hCDd+

Gated on live, CD45*, Lin (CD3/CD19/NK1.1) cells



0.04+

0.034

0.02+

0.01+

IL-33 mRNA (relative to GAPDH)
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Figure 4.1. IL33 is expressed in the hematopoietic cells of human pulmonary tis-
sue and varies widely between individuals. qPCR for /L33 levels in the dO RNA iso-
lates from the human pulmonary hematopoietic cells of 50 lung donors.Values are
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Figure 4.10. IL33 is produced by a CD66b+ granulocytic population of
lung cells. Distinct cell populations from human lungs were isolated by Flow
Cytometric Sorting (FACS), from which ¢cDNA was prepared (Continued on
page 96).

Figure 4.10, continued. (A) R305 was sorted into four broad populations
based on the following phenotypes: Red: CD45-, White: Granulocytes
(CD45+CD66b+), Green: Dendritic Cells (CD45+CD11c+), and Blue: Other
Cells (CD45+CD11c-CD66b-). IL33 levels are shown relative to ACTB. (B)
R317, R358, and R343 were sorted base on the following phenotypes: Red:
CD45-, Grey: Monocytes and macrophages (CD45+CD14+), Orange: Lympho-
cytes (CD45+CD14-CD3/19+CD66b-), White: Granulocytes (CD45+CD14-
CD3/19-CD66b+), and Blue: Other Cells (CD45+CD14- CD3/19-CD66b-). IL33
levels are relative to GAPDH. (C) R371 and R358 were sorted based on the
following phenotypes: White: All granulocytes (CD45+CD14-CD3-CD19-
CD66b+), Yellow: CD16hi granulocytes (CD45+CD14-CD3-CD19-CD66b
+CD16hi), Cyan: CD16lo granulocytes (CD45+CD14-CD3-CD19-CD66b
+CD16lo).
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