Rhinovirus and the T-Cell Landscape in Childhood Asthma

Naomi Bryant, MS PhD candidate, Woodfolk lab 62nd Swineford Allergy Conference April 13, 2024

RV as a Cause and Exacerbator of Asthma

• Rhinovirus (RV) is the primary cause of the common cold

 \rightarrow ~2 infections per year for children and ~1 for adults¹

• Implicated in the development of asthma²

 \rightarrow Most common viral agent implicated in bronchiolitis after 1 year

• Potent trigger for acute wheezing episode in those with asthma²

 \rightarrow Contributes to ~50-80% of exacerbations

[1] CDC,2023; [2] Jackson and Gern, JACI In Practice, 2022

Role of T Cells in Viral Infection

How Do Virus-specific T Cells Factor into Asthma Pathogenesis?

Soremekun et al, Thorax, 2023.

What Role Do RV-specific T Cells Play in Childhood Asthma?

- Hypothesis: RV-specific CD4+ T cells reside and persist in the lower airways of children with asthma, where they are poised to promote chronic inflammation.
- Limitations:
 - Accessibility of the lower airways
 - Difficulty in obtaining specimens
 - Limited cell numbers

Study Design

Children with treatment-refractory wheeze, ages 1-16 yrs. (*n*=32)

Treatment-refractory wheeze

Regional Referral of Children with Troublesome Cough/Wheeze/Croup

Specific Diagnosis and Guidelines-based Treatment

Clinically Indicated Bronchoscopy

- 1) Could not attain symptom control
- 2) Recurrent healthcare utilization for wheeze despite appropriate treatment

W. Gerald Teague

Study Design

Children with treatment-refractory

*Asymptomatic at time of bronchoscopy

ge (years) ex (% males) aucasian (%) otal IgE (IU/ml) copic	6.0 (4.7-7.6) 23 (71.9%) 24 (75.0%) 61.9 (34.1-112.3) 20 (62.5%)	6.7 (5.0-8.9) 16 (72.7%) 16 (72.7%) 72.7 (33.9-156.0) 15 (68.2%)	4.8 (3.0-7.7) 7 (70.0%) 8 (80%) 43.5 (14.8-128.1) 5 (50%)	0.19 >0.99 >0.99 0.35 0.44
ex (% males) aucasian (%) otal IgE (IU/ml) copic	23 (71.9%) 24 (75.0%) 61.9 (34.1-112.3) 20 (62.5%)	16 (72.7%) 16 (72.7%) 72.7 (33.9-156.0) 15 (68.2%)	7 (70.0%) 8 (80%) 43.5 (14.8-128.1) 5 (50%)	>0.99 >0.99 0.35 0.44
aucasian (%) otal IgE (IU/ml) copic	24 (75.0%) 61.9 (34.1-112.3) 20 (62.5%)	16 (72.7%) 72.7 (33.9-156.0) 15 (68.2%)	8 (80%) 43.5 (14.8-128.1) 5 (50%)	>0.99 0.35 0.44
otal IgE (IU/ml) copic	61.9 (34.1-112.3) 20 (62.5%)	72.7 (33.9-156.0) 15 (68.2%)	43.5 (14.8-128.1) 5 (50%)	0.35 0.44
opic	20 (62.5%)	15 (68.2%)	5 (50%)	0.44
				•
Cut point for high dose ICS	based on age: < 6 years ≥	≥ 176 mcg/day, 6-11	years 500 mcg/day,	
2 12 years 1000 mcg/day				

*Asymptomatic at time of bronchoscopy

High Throughput Workflow for Deep T Cell Profiling

Examining the T Cell Landscape in Treatment-refractory Wheeze

T Cell Landscape in the Lower Airways is Diverse

T Cell Landscape in the Lower Airways is Diverse

Type 1 and 17 Cells are Enriched in the Lower Airways of Children with Wheeze

CD4+ T cells

Summary

- The T cell landscape of the lower airways of children with treatment-refractory wheeze is highly complex and heterogeneous
 - \uparrow CCR5+ T cells, \uparrow CD8+ T cells, \uparrow Tissue-resident cells
 - T1/T17 > T2

How Does RV Infection Impact the T Cell Landscape?

T-REX (Tracking Responders Expanding) Identifies Rare Virus-Responsive T Cells

Barone et al, eLife, 2021; Diggins et al, 2017, Leelatian et al, 2020

T-REX Identifies T Cell Signatures Unique to the Airways of RV+ Children

Activated Tissue Homing T Cells are Enriched in RV+ Children

Tissue homing CCR5 CXCR3 Activation PD-1 CD38 CD25 Tissue Residence CD69 CD103

> Proliferation Ki-67

IL-17 Production CD161

• \uparrow In RV positive • \uparrow In RV negative

T Cell Frequencies Correlate with Airway Neutrophils in RV+ Children

Evidence of a Dynamic T Cell Environment

1 ICOS⁺⁹ CD45RO⁺⁷ CD4⁺⁶ Ki-67⁺⁶ CD38⁺⁶ CCR5⁺⁵ CD95⁺⁵ CD27+4 PD-1⁺³ CD69⁺³ CD25⁺³ CXCR3⁺² (Highly - proliferating Th1-like)

2 CD45RO⁺⁷ CD4⁺⁶ ICOS⁺⁶ CD38⁺⁴ PD-1⁺³ CCR5⁺³ CD95⁺³ Ki-67⁺² CD27⁺² (Proliferating CD4+ effector)

RV Challenge Identifies Hallmarks of Infection

RV-Responsive T Cells Mirror Those Found in RV+ Children

Pediatric BAL #1: ICOS⁺⁹ CD45RO⁺⁷ CD4⁺⁶ Ki-67⁺⁶ CD38⁺⁶ CCR5⁺⁵ CD95⁺⁵ CD27⁺⁴ PD-1⁺³ CD69⁺³ CD25⁺³ CXCR3⁺² (Highly Proliferating Th1-like)

Percent Similarity = 89.6

RV-Responsive T Cells Mirror Those Found in RV+ Children

Pediatric BAL #3: CD45RO⁺⁷ CD4⁺⁶ ICOS⁺⁶ PD-1⁺⁵ CCR5⁺⁵ CD161⁺⁴ CD95⁺⁴ CD38⁺⁴ CD69⁺²

(Activated Th17-like) RMSD=86.9

Percent Similarity = 86.9

Summary

- Unsupervised machine learning tools provide a precise tool for identifying putative RV-specific T cells
- T cells enriched in the airways of RV+ children display RV-responsive hallmarks

Conclusion

 In children with treatment-refractory wheeze, RV-responsive CD4+ T cells reside within the lower airways, where they are poised to exert their pathogenic function in a dynamic T cell environment

Acknowledgments

Dissertation Committee

Loren Erickson (chair) Sepideh Dolatshahi Sarah Ewald Young Hahn

<u>Turner Lab</u> Ron Turner Cheree Denby Taylor Deb Thacker

<u>Woodfolk Lab</u> Judith Woodfolk Paul Dell Glenda Canderan Lyndsey Muehling

Contact: nb2cx@virginia.edu

Heymann Lab Peter Heymann Deb Murphy Holly Carper Carolyn Word

Collaborators

Larry Borish Jonathan Irish W. Gerald Teague

UVA Flow Core

Mike Solga Lesa Campbell Taylor Harper Alexander Wendling

<u>Funding</u>

NIAID Regeneron T32 AI007496

Thank you to all of our study participants