Bones 101: Introduction to Emergency Orthopedics

Claire Plautz, MD (with special thanks to) Andrew D. Perron, MD University of Virginia Health System

Intro to ortho: Overview

General Terms & Principles Radiology Ottawa Salter-Harris Classification Splinting Complications Pain Control Follow-up

Ortho History

- Mechanism of injury
- Other injuries
- Tetanus status (if skin break)
- Handedness (for hand injuries)

Ortho Physical

Inspection Swelling/color/deformity \blacksquare <u>ROM</u> Active/passive Palpation Point of Max tenderness Hematoma/crepitus Neurovascular Assessment ■ Motor: 0-5; peripheral nerve function

Motor Grade

- $\mathbf{D} = \mathbf{N}\mathbf{a}\mathbf{d}\mathbf{a}$
- 1 = Muscle fires (fasciculation); no movement
- -2 = Moves with gravity eliminated
- 3 = Moves against gravity
- $\blacksquare 4 =$ Not full strength
- 5 = Full strength

Ortho Physical

Sensation

 2-point
 Pinprick

 Vascular

 Cap refill
 Pulses/skin temp

Limb Deformity

Valgus = away from midline
Varus = towards the midline

Nomenclature

Subluxation: partial loss of the nl anatomic relationship between joint surfaces Dislocation: complete loss of the normal anatomic relationship between joint surfaces (Note: Fractures don't dislocate, they displace)

Nomenclature

<u>Nomenclature</u>

Nomenclature

Transverse/spiral/comminuted

Open vs. Closed

Nomenclature

Impacted/avulsed

Nomenclature

Complete/incomplete

Buckle (Torus)/bowing fracture

Fracture description

Angulation

Shortening

Displacement/ apposition

Radiology

• A minimum of 2 views at right angles to each other are necessary to evaluate a bone or joint.

<u>Many</u> specialized views (Joint specific)

TABLE 2-3

ABC'S Approach to Interpreting Skeletal Radiographs

Adequacy	All views are included Positioning and penetration (exposure) are correct
Alignment	Anatomic relationships between all bones are normal
Bones	Look for fracture lines or distortion of cortex and trabeculae Supplementary views may be needed to detect nondisplaced fractures Pseudofractures can mimic a fracture: Accessory ossicles, growth plates, nutrient artery foramina, and Mach bands
Cartilage	Joints should be of normal width and have uniform spacing Fracture fragments may be seen within joint space
Soft tissues	Soft tissue swelling, joint effusions, and distortion of fat planes may be easier to see than the fracture itself

Just where is Ottawa and why should I care (And what does it have to do with Orthopedics?)

Ottawa Criteria

 Decision rules for determining who needs a knee/Ankle x-ray.

Ian G. Stiell et. al. 1995

Designed to <u>reduce cost</u> while <u>not</u> missing clinically significant bony injuries

Shooting for sensitivity of 1.0 (want to miss no fractures, ok to xray some normal joints)

Ottawa Knee Rules

Age 18-55
Able to weight-bear > 4 steps
Able to flex to 90°
No fibular head tenderness
No isolated patellar tenderness

Ottawa Knee Rules

1,047 patients (68 fractures)
Sensitivity = 1.0
Specificity of .54
Rule would have reduced x-rays by 28%

Ottawa Ankle Rules

Stiell et al.
Age 18-55
Acute (<10 days) injury
Initial evaluation
Not pregnant

Ottawa Ankle Rules

No bony tenderness POSTERIOR edge of distal 6 cm of fibula or tibia

 No tenderness in midfoot (base 5th MT, Navicular)

Able to bear weight 4 steps in ED

Ottawa Ankle Rules

Sensitivity of 1.0 Reported equivalent patient satisfaction Saves a lot of money.

A word on kids...

Tendons are stronger than bones.
They can't always tell you exactly where it hurts.
Missed fractures in kids cost a lot.

<u>Growth Plate Injuries</u> (aka Salter-Harris classification)

- Epidemiology:
 - 15-30% of all skeletal injuries in children
 - Occurs most commonly after age 10, with a median age of 13 years. Males >> females
 - Distal radius most common (30-60% of cases)
 - Most common April-September
 - Most commonly mis-diagnosed as "sprain"

Salter-Harris classification

"Can I have something for pain?"

Sprains hurt too! (Don't let the x-ray determine if the patient has pain)
Anticipate duration of pain
NSAID and narcotics for most
"R-I-C-E"

<u>Splinting</u> (not casting)

Adequate for the job
The right splint
The right material
The right size
Well-padded
Comfortable

Always: Extend Padding Beyond Splint Splint Thickness: •Upper Extremity 8-10 Layers •Lower Extremity 12-15 Layers Molding/Holding: •Always Use Pads of Hand to Mold and Hold

•Dry in 30-90 Minutes

•Ace Wraps Hold Splint... Not for Compression

Fracture complications

- Open fracture
- Compartment syndrome
- Neurovascular injury
- Splinting errors
- Unrecognized implications

Follow-up

- Everybody needs it!
- Appropriate caregiver. (NOT all injuries need to follow-up with ortho) Conversely, don't send complex fractures to primary care provider.
- When in doubt, splint and follow-up (especially kids)
- Give clear, <u>time-sensitive</u> instructions to return for problems.

Ortho Pitfalls

X-rays not obtained
Correct views not obtained
Inadequate films accepted
Failure to consider > 1 injury
Failure to consider occult fractures

Failure to diagnose complications:

Neurovascular injury Compartment syndrome Retained foreign body Systemic Complications ■ Fat emboli ■ Rhabdo

Treatment errors:

Failure to keep pt NPO.
Failure to immobilize
Incorrect/Incomplete splinting
Casting complications
Non-weightbearing/elevation

Failure to communicate:

Poor discharge instructions
 Inadequate follow-up

QUESTIONS/COMMENTS

