Single-cell mass cytometry adapted to measurements of the cell cycle

Cytometry

Journal of the International Society for Advancement of Cytometry

Illuminate: a single light source Ultimate goal: quantification Mass cytometry: creating a new paradigm

Cell cycle analysis by mass cytometry

- Method for cell cycle analysis
 - Markers of cell cycle phases
 - S-phase
 - G0
 - G1, G2, M
 - Validation with cycling T Cells
- System-level analysis of cell cycle in normal and malignant hematopoiesis
 - SPADE clustering
 - 35 parameter analysis of normal bone marrow cell cycle
 - Application to hematologic malignancies

Mass cytometry DNA staining

(pentamethylcyclopentadienyl)-Ir(III)-dipyridophenazine

IdU incorporates rapidly into S-phase cells

IdU incorporates rapidly into S-phase cells

IdU incorporates rapidly into S-phase cells

-Andrew Hughes, Gene Ther Mol Biol., 2006; 10:41

Uridine

Uridine

Cell cycle assessment is robust and consistent across multiple cell types

Cell cycle assessment is robust and consistent across multiple cell types

Phosphorylated Rb (S807/S811) discriminates G0 and G1 phase cells

The same cell cycle markers can be used for fluorescence cytometry

Fluorescence Cytometry

Fluorescent cytometry

Mass cytometry

Fluorescent cytometry

Fluorescent cytometry

Mass cytometry

Cell cycle analysis by mass cytometry

- Method for cell cycle analysis
 - Markers of cell cycle phases
 - S-phase
 - G0
 - G1, G2, M
 - Validation with cycling T Cells
- System-level analysis of cell cycle in normal and malignant hematopoiesis
 - SPADE clustering
 - 35 parameter analysis of normal bone marrow cell cycle
 - Application to hematologic malignancies

Panel for analysis of cell cycle in human marrow

ANTIGEN	CONJUGATE	CLONE	CONCENTRATION	MANUFACTURER
Mass cytometry				
CD3	In-113	UCHT1	1.5 μg/mL	Biolegend
CD45	In-115	H130	1.5 μg/mL	Biolegend
CD45RA	La-139	Hl100	$1 \mu g/mL$	Biolegend
CD133	Pr-141	AC133	$2 \mu g/mL$	Militeney
CD19	Nd-142	H1B19	$1 \mu g/mL$	BD Biosciences
CD71	Nd-143	R17217	2 μg/mL	eBiosciences
CD11b	Nd-144	ICRF44	2 μg/mL	Biolegend
CD4	Nd-145	RPA-T4	2 μg/mL	Biolegend
CD8	Nd-146	RPA-T8	$1 \mu g/mL$	Biolegend
CD20	Sm-147	2H7	$1 \mu g/mL$	BD Biosciences
CD34	Nd-148	8G12	$2 \mu g/mL$	BD Biosciences
CD90	Sm-149	5E10	2 μg/mL	Biolegend
CD117	Nd-150	104D2	0.5 µg/mL	Biolegend
CD123	Eu-151	9f5	2 μg/mL	BD Biosciences
CD235	Sm-152	HIR2	0.5 µg/mL	Biolegend
HLA-DR	Eu-153	L243	2 μg/mL	Biolegend
Cyclin A	Sm-154	BF683	2 μg/mL	BD Biosciences
Cyclin B1	Gd-156 Dy-164	GNS-1	$2 \mu g/mL$	BD Biosciences
CD33	Gd-158	WM53	1.5 μg/mL	Biolegend
CD38	Tb-159	HIT2	1 μg/mL	Biolegend
CD14	Gd-160	M5E2	2 μg/mL	Biolegend
CD7	Dy-162	M-T701	$0.5 \mu \text{g/mL}$	BD Biosciences
CD15	Dy-164	W6D3	0.5 μg/mL	Biolegend
p-pRb (S807/811)	Ho-165	J112-906	0.5 μg/mL	BD Biosciences
Ki-67	Er-167	B56	1 μg/mL	BD Biosciences
CD13	Er-168	L138	2 μg/mL	BD Biosciences
p-CDK1(Y15)	Tm-169	10A11	$2 \mu g/mL$	Cell Signaling Technology
CD56	Er-170	HCD56	2 μg/mL	Biolegend
cleaved-PARP(D214)	Yb-171	F21-852	1 μg/mL	BD Biosciences
p-RPS6(S235/36)	Yb-172	N7-548	1 μg/mL	BD Biosciences
CD10	Yb-174	Hl10a	$4 \mu g/mL$	Biolegend
CD16	Lu-175	3G8	$2 \mu g/mL$	Biolegend
p-Histone H3(S28)	Yb-176 Er-168	HTA28	$0.5 \mu g/mL$	Biolegend

Biaxial plots are not a scalable solution

Parameters: 32 Plots: 496

Sean Bendall, Erin Simonds. Science, May 2011

SPADE: Spanning-tree Progression Analysis of Density-normalized Events – Peng Qiu

1. Determine Tree Structure

2. Overlay regions with surface marker expression levels

Mature Monocytes

B cell proliferation is concentrated in pre-BII population

Normal Human Bone Marrow Colored for CD45

Erythroid cell proliferation is concentrated in erythroblast population

Myelocyte proliferation peaks at early promyelocyte stage

Normal Human Bone Marrow Colored for CD45

= 67%

SPADE analysis allows for identification of distinct AML immunophenotypes

Normal human bone marrow Clustered alongside AML samples Colored for CD45 Cell cycle distribution varies across the immunophenotypic subsets within each AML sample

AML5

AML9

S

Conclusions

- Validated methodology for using mass cytometry to asses cell cycle state in combination with high-parameter immunophenotypic analysis
- System-wide analysis of proliferation across normal human hematopoiesis
- The ability to combine cell cycle state with multiple other variables in the monitoring of cellular responses at the single-cell level
- We intend to use this methodology to characterize the cell cycle within complex human cancer samples

Acknowledgements

- Nolan Lab
 - Garry Nolan
 - Wendy Fantl
 - Sean Bendall
 - Erin Simmonds
 - Rachel Fink
 - Matt Clutter
 - Angelica Trejo
 - Matt Hale
- Stanford
 - Michael Linderman
 - Sylvia Plevritis
- MD Anderson
 - Peng Qiu

- Hematology
 - Bruno Medeiros
 - Peter Greenberg
 - Beverly Mitchell
 - Aparna Raval
- Cytobank
 - Nikesh Kotecha