Adaptation and Design of Panels for the CyTOF

December 5, 2014 CyTOF User Meeting – University of Virginia Mike Leipold

Two Different Approaches to Simultaneous Detection

Fluorophores

Elemental Tagging

Fluorometer

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Two Different Approaches to Simultaneous Detection

8 Alexa Fluorophores

Elemental Tagging

LSR II

CyTOF

Overview

- 1. CyTOF the machine, pros and cons
- 2. Panel development background, desired signals
- 3. Experimental procedures antibodies, reagents
- 4. Running samples example data
 - LSRII vs CyTOF
 - Flu 2010, 2011

Part 1 – The CyTOF

Single Cell Analysis - CyTOF[™] Machine

Flow Interface to ICP-MS

- Nebulizer vaporizes
- Argon Plasma atomizes and ionizes
- Mass analyzer

Figure courtesy O. Ornatsky

Single Cell Analysis - CyTOF[™] Machine

Published in: Dmitry R. Bandura; Vladimir I. Baranov; Olga I. Ornatsky; Alexei Antonov; Robert Kinach; Xudong Lou; Serguei Pavlov; Sergey Vorobiev; John E. Dick; Scott D. Tanner; *Anal. Chem.* **2009**, 81, 6813-6822. DOI: 10.1021/ac901049w Copyright © 2009 American Chemical Society

Display of Cell Events

-"Push" analogous to time: 76,800 pushes/sec: 220 displayed here (1/400 of data)

Pros of CyTOF

- Advantages:
 - Minimal "spectral" overlap higher dimensionality (more probes at once)
 - Quantitative broad dynamic range
 - Not light- or time-sensitive
 - Minimal background
 - no analogy to autofluorescence: low/nil biological background for lanthanides

Cons of CyTOF

- Disadvantages:
 - Destructive: (currently) no way to recover interesting cells
 - Slower: limit of 1000 cells/sec; practical limit for best resolution often in ~400 cells/sec range
 - Cell transmission efficiency: only ~20-30% of cells that enter machine get counted
 - Ion transmission efficiency: only ~1 in <u>10,000</u> ions that enter machine get counted

Cons of CyTOF

- Disadvantages:
 - Postprocessing: cannot set "on fly" gates to get only "live intact singlets"
 - Events registered by CyTOF contains debris, doublets, etc
 - Might only get ~50% of total events as "live intact singlets"
 - No analogy to FSC or SSC: MUST have marker (Mⁿ⁺) for any gating

Single Cell Analysis - CyTOF[™] Machine

- CyTOFv1 - ~2010-May 2013

- Mass window ~93 units: eg, AW 103-195

- CyTOFv2 May 2013-current
 - Mass window ~135 units: eg, AW 78-212
 - More automated tuning, including recordkeeping
 - Improvements in ion optics
 - tighter peaks, less "spillover"

Part 2 – Panel Design

Relevant Issues to Panel Design

- 1. Background any non-desired signal
 - contaminating signals
 - antibody titer (not discussed)
- 2. Desired Signal
 - antibody clone
 - metal label analogous to fluorophore choice

Relevant Issues to Panel Design – Background Signals

- * Desired signal only at <u>Mass "M"</u>
- 1. M+16 oxide cannot eliminate, can only limit
- 2. Metal salt impurities M+1, M-1, etc; Ln
- 3. Environmental contamination sample
- 4. Instrument

* All potential sources of background, even spillover!

Relevant Issues to Panel Design – Background Signals

* Desired signal only at <u>Mass "M"</u>

- 1. M+16 oxide cannot eliminate, can only limit
 - Proper daily machine tuning
 - Lower AW Ln = worse

Daily Tuning – Liquid Tuning Solution

Current profile

Make-up Gas profile

DVS Elemental Beads – "Cells"

Polystyrene beads: contain nat. abund. Eu; or La, Pr, Tb, Tm, Lu
Act as "cells" run in acquisition mode (vs. tuning/solution mode)

Effect of Tuning – Beads - Oxidation

Linear Scale

- At high MG flow rate, oxidation can be significant (decreases M, increases M+16 spillover)
- Even a few percent can be significant for high-abundance markers (eg, CD57, histone proteins, CD45, etc)

Relevant Issues to Panel Design – Background Signals

* Desired signal only at Mass "M"

- 2. Metal salt impurities
 - a) Few lanthanides are naturally 100% monoisotopic
 - e.g., Nd144 signal in Nd145 salt
 - M+1, M-1, etc
 - b) Other lanthanide contaminations all Ln chemistry is similar
 - La139 most common contaminant

Purity of Isotopes – Liquid Stock Solutions

CyTOF Channel

		Γ	La	Ce	Pr	Ce	Nd	Nd	Nd	Nd	Pm	Nd	Sm	Nd	Eu	Sm	Eu	Sm	Gd	Gd	Gd	Gd	Tb	Gd	Dy	Dy	Dy	Dy	Но	Er	Er	Er	Tm	Er	Yb	Yb	Yb	Yb	Lu	Yb	Hf	Hf
			139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178
	La	139	75	2	0.2	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	3.4	0.2	0	0	0.1	0	0	0	0	0	0	0	0	0	8	0.3	0.1	0	0	0	0	0	0.1	0.1
	Pr	141	0.3	0.2	77	2.3	0.2	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	4.8	0.2	0.1	0	0	0.2	0	0	0	0.1	0.1	0.1	0.2	7.5	0.3	0	0	0	0	0	0	0
	Ce	142	0.6	0.1	0.3	81	2.9	0.6	0.1	0.2	0.1	0.1	0	0.1	0	0	0	0	0	0	0	4.6	0.3	0.1	0	0.1	0	0	0	0	0	0	0.1	0.4	0	0	0	0	0	0	0	0
	Nd	143	0.9	0.1	0.1	1	80	4.3	0.5	0.3	0.1	0.1	0.1	0.1	0	0	0	0	0	0	0	0.1		0.3	0.1	0.7	0.1	0	0	0	0	0	0.1	0.1	0	0	0	0	0	0	0	0
	Nd	144	1.3	0.1	0.1	0.3	0.5	75	2.8	0.5	0.1	0.1	0.1	0.1	0	0	0	0	0.1	0	0	0	0.1		0.2	0.5	0.1	1.2	0.1	0	0	0	0.1	0.1	0	0	0	0	0	0	0	0
•	Nd	145	1.9	0.1	0	0.3	0.3	1.4	77	6	0.4	0.2	0.1	0.1	0.1	0	0	0	0.1	0.5	0.1	0	0.1	0.1	4.4	0.5	0.1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u> </u>	Nd	146	3.7	0.2	0	0.2	0.2	0.4	0.5	79	2.7	0.5	0.1	0.1	0.1	0.1	0	0.3	0.2	0.1	0	0	0.2	0	0		0.2	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0
0	Pm	147	5.9	0.2	0	0	0	0.1	0.1	0.4	72	6	1.3	0.4	0.1	0.6	0.1	0.5	0.3	0.1	0	0	0.2	0.1	0	0.1	1.1	0.2	0	0	0	0.5	0.1	0	0	0	0	0	0	0	0	0
7	Nd	148	2.4	0.1	0	0.4	0.2	0.4	0.2	0.7	0.4	80	2.9	0.8	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0.1	0	0	0.1	0		0.2	0.1	0	0.1	0	0	0	0.4	0	0	0	0	0	0
	Sm	149	3.4	0.2	0	0	0	0	0	0.1	0.3	1.3	76	4.8	0.4	0.8	0.1	0.4	0.2	0.1	0	0	0.1	0	0	0	0	0	1	0.1	0	0	0	0	0	0.1	0	0.5	0.1	0	0	0
g	Nd	150	0.7	0.1	0	0.3	0.2	0.5	0.2	0.4	0.1	0.3	0.3	84	3.4	0.4	0.1	0.1	0.1	0.1	0	0	0.1	0.6	0	0	0	0	0		0.2	0	0	0	0	0	0	0.1	0	0	0	0
S	Eu	151	0.5	0	0	0	0	0	0	0	0	0	0.1	0.3	88	3.7	1.3	0.1	0.1	0.1	0	0	0	0.2	0	0.1	0	0	0	0	0.1	0	0	0	0.2	0	0	0	0	0	0	0
a)	Sm	152	0.5	0.1	0	0	0	0	0	0	0.1	0.1	0.2	0.3	0.5	86	3.9	1.4	0.1	0.1	0.1	0	0.1	0.1	0	0	0	0	0	0	0	0.9	0.1	0	0	0	0	0	0.3	0	0	0
×	Eu	153	1.4	0.1	0	0	0	0	0	0	0	0	0	0.1	0.4	0.4	87	4	0.5	0.1	0	0	0.3	0.1	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0	0.1	0	0	0
X	Sm	154	1.2	0.1	0	0	0	0.1		0.2	0.1	0	0.1	0.1	0	0.9	0.2	82	3.4	0.8	0.1	0.1	0.1	0.1	0.2	0.1	0	0.1	0	0	0	0	0	0.8	0.1	0	0	0	0	0	0	0
<u> </u>	Gd	156	0.2	0	0	0	0.1	2	0.1	0	0	0	0	0	0	0	0	0.1	1.1	81	7.8	1.7	0.1	0.5	0.1	0.2	0.1	0.3	0	0	0	0	0	0	0	1.4	0.2	0	0	0	0	0
Ħ	Gd	158	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.1	0.2	0.5	1	84	4.3	2	0.1	0.1	0	0	0.4	0	0	0	0	0	0	0	0	1.3	0.1	0	0	0
ы С	Tb	159	3.2	0.1	0	0	0	0	0	0	0	0	0	0	0.2		0.1	0.1	0.2	0	0.1	0.2	83	4.4	0.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	1.4	0.1	0	0
<u> </u>	Gd	160	1.6	0.1	0	0	0	0	0	0	0	0.1	0.7	0	0	0	0	0	0.3	0.4	0.3	1.2	0.3	85	4.3	0.5	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0	1.4	0.1	0
4	Dy	162	0.1	0	0	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1		0.2	2	80	7.2	1.4	0.1	0	0	0.1	0.1	0.1	0	0	0	0	0.1	0	0	1
$\underline{-}$	Dy	164	0.1	0	0	0	0.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0.2		1.6	87	4	0.5	0.1	0	0.1	0.1	0	0	0	0	0	0	0	0
60	Но	165	2.7	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0.2		0.1	0.1	0	0	0	0.2	0.1	0	0	0.1	0.3	83	5.1	0.7	0.1	0	0	0.1	0	0	0	0	0	0	0
	Er	166	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0	0.1	0.3	85	6.6	1.1	0.1	0.1	0.1	0	0	0.1	0	1.5	0.1	0
17	Er	167	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0.6	0.1	0	0	0	0	0.1	0.2	1.5	84	7.6	0.8	0.3	0.1	0	0	0	0	0	0	0
01	Er	168	1.8	0.1	0	0	0	0	0.1	2.1	0.1	0	0	0	0	0	0	0.1	0.1	0	0	0	0	0	0	0.1	0	0.1	0	0.4	1.9	83	4.1	0.9	0.1	0	0	0	0	0	0	0
	Tm	169	1.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0.2	0	0	0	0	0	0	0	0.1	0.5	85	3.5	0.5	0.1	0.1	0.1	0.1	0.1	0	0
	Er	170	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0.8	0.7	1.2	0.5	86	4	0.6	0.1	0.1	0.1	0.1	0	0
	Yb	171	0.6	0	0	0	0	0	0	0	0	0	0.1		0.1	0	0	0	0	0	0	0	0	0.4	0	0	0	0	0	0.1	0	0.1	0.1	0.5	80	8.8	1.3	0.6	0.1	0.2	0.1	0
	Yb	172	1.7	0.1	0	0	0	0	0	0.1	1.4	0.1	0	0	0	0	0	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0.2	0.1	0.1	0.6	82	6.7	1.3	0.1	0.2	0.1	0.1
	Yb	174	0.4	0	0	0	0	0	0	0	0.1	1.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0	0	0.1	0.3	0.7	87	5.1	1.1	0.1	0.1
	Lu	175	1.2	0.1	0	0	0	0	0	0	0	0	0	0.1	1.9	0.1	0	0	0.1	0	0	0	1.2	0.1	0	0	0	0	0	0	0	0	0.1	0	0.1	0.1	0.1	0.4	79	8.2	1	0.1
	Yb	176	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0.3	0.2	2.1	0.5	89	5.3	0.7

- M+1 impurities some isotopes worse than others
- M+16 oxidation impurities affects all isotopes; lower AW worst

BD Ig κ Capture Beads and MAXPAR Antibodies

* Spillover due to <u>elemental</u> and/or <u>isotopic</u> impurities, not strictly <u>mass</u> proximity

Major Contaminants/Spillovers: Percentage of M

	M-2	M-1	Μ	M+1	M+2	M+16
In113	0	-0.3	100	-0.1	1	0
Nd142	-0.2	-0.2	100	0.53	-0.1	3.39
Nd143	-0.4	-0.2	100	1.32	-0.3	3.06
Nd144	-0.4	-0.3	100	0.2	-0.3	2.68
Nd146	-0.1	-0.1	100	0.42	-0.1	2.99
Sm147	-0.2	-0.2	100	2.58	0.09	0.44
Sm149	-0.2	-0	100	1.71	-0.3	-0.08
Nd150	-0.2	-0.2	100	0.43	-0.2	1.67
Eu151	-0.1	-0.1	100	0.52	0.11	-0.12
Sm152	-0.2	-0.2	100	0.43	-0.1	-0.08
Sm154	0.25	-0	100	0.5	-0.1	0.3
Gd156	-0.1	0.31	100	2.46	0.24	0.72
Dy164	0.05	0.77	100	0.37	-0	0.72
Ho165	-0.1	-0.1	100	0.71	-0.1	0.53
Er166	-0.1	-0	100	1.16	-0	0.67
Er167	-0.2	0.27	100	2.14	-0.1	0.52
Er168	-0	0.6	100	0.72	0.01	0.99
Er170	0.3	-0.1	100	0.86	-0.1	0.97
Yb171	-0.2	-0.1	100	3.15	-0.1	-0.47
Yb174	-0	0.24	100	0.66	0.06	-0.03
Lu175	-0.2	-0.1	100	2.33	-0.1	63.8
Yb176	0.74	-0.1	100	1.31	-0.1	-0.22

- M+1 and M+16 are usually the major spillovers

- Only Fluidigm metals shown; non-Fluidigm metals can be worse

* Ir191 contam?

Major Contaminants/Spillovers: Cell Data

* Formerly, Fluidigm sold Dy162 and Dy164, but not Dy163
 – Dy purity issues

Regular Phenotyping panel: CD45RA-Dy162 CD20-Dy164

* no Dy163 antibody in experiment, so not usually monitored

Major Contaminants/Spillovers: Cell Data

CD45RA-Dy162 CD20-Dy164 * no Dy163 antibody in experiment! Magenta: both Dy162, Dy164 Blue: Dy162 only Red: Dy164 only

Relevant Issues to Panel Design – Background Signals

3. Environmental contamination

- Reagents PFA lots with microparticles, MeOH with free metal, Ar gas with Sn
- Biological sourcing Iodine (free I vs IdU), Pt in cisplatin-treated donor samples
- Lab dust
- Barium, lead, etc dish soap, syringes, reagent sourcing, striker flint, etc

Relevant Issues to Panel Design – Background Signals

4. Instrument Abundance Sensitivity

- left (M-1) and right (M+1) leg of ion peak
 - CyTOFv1: 0-1%
 - CyTOFv2: <0.3%

Worse with high AW masses:
 peak less Gaussian, M+1 leg
 wider

Major Contaminants/Spillovers: Percentage of M

- * CyTOF spillover still much less than Fluorescence spillover!
- * All proportional to signal at Mass "M".....
- 1. Match marker abundance with metal brightness
 - 1% of 300 is 3 (background)
 - 1% of 3000 is 30 (probably not background)
- 2. Mutually exclusive lineages
 - T cell marker followed by B cell marker
- 3. Dump channels for most contaminated isotopes
 - analyze the "negative" cells

<u>Reminder</u>: you cannot detect anything that doesn't have bound metal - No scatter to gate monocytes from lymphocytes, etc

- Only about 3-fold difference in signal across lanthanides
- Switching lanthanides might help <u>only</u> in borderline cases

- 1. "Dim" metals In, La, Pr, Nd, Sm
 - Bright/abundant markers (eg, CD57)
 - True bimodal (eg, CD27)

2. "Bright" metals – Tb, Dy, Tm, Yb

- Dim/rare markers
- "Smear" distribution (eg, CD45RA, CCR7)
- Small fold-change

3. Recommend bivariates

- one bright, one dim
- two mediums "smear", or subpopulations

Desired Signals – CD85j as a Borderline Case

Confirm New Markers With More Than One Donor

Part 3 – Experimental Procedure

CyTOF Sample Info

1. Reagent purity is paramount

- MilliQ water <u>only</u>
- trace metal pure salts and buffers, if possible

2. All samples - fixed and permeabilized

- Thorough fixation - Fresh PFA!

3. MilliQ water washes at the end

- Proper fixation ensure intact cells
- Minimizes buffer salt introduction into machine

4. Titrate all reagents for your assay conditions

- Commercial
- Every batch of in-house reagents re-verify before use

CyTOF Sample Info – Starting Cell Count

* Remember: only 20-30% cell transmission efficiency - also, processing losses

Cells	Live intact					
Plated	singlets					
200K	28K					
500K	76K					
1M	175K					

150,000 Live intact singlets 100,000 Live intact Singlets R square 0.9895 50,000-Live intact Singlets Slope 0.1829 ± 0.01088 Y-intercept when X=0.0 -14297 ± 6900 78149 X-intercept when Y=0.0 500,000 1,000,000 1,500,000 Ō

Titration of cell numbers - Plated vs Live Intact Singlets

Cell #, plated

<u>Yao et al</u>: down to 10K (major only) <u>HIMC</u>: recommend at least 500K

Metal Staining of Cells - DNA Intercalator

Structure of [Cp*Ir(dppz){(NH₂)₂CS}](CF₃SO₃)₂

 $C_{31}H_{29}F_6IrN_6O_6S_3$ Mol.Wt.:984.08 Da

Schaferet al *J.Organomet.Chem.*, **2007**, *692*, 1300–1309 Ornatsky et al, *Anal. Chem.*, **2008**, *80*, 2539–2547

 Labels <u>any</u> cell containing DNA regardless of whether any labelled antibodies bind

Chelating Polymer Structures

X8

linear polymer with ~22 chelation sites

DN3

branched dendrimer, ~16 chelation sites

Antibodies – X8 vs DN3 Comparison

Live intact singlets 011411-PBMC-DN3-duplex-TbHo_cells_found.txt Event Count: 14144

Live intact singlets 011411-PBMC-DN3-duplex-TbHo_cells_found.txt Event Count: 14144

Live intact singlets 011411-PBMC-DN3-duplex-TbHo_cells_found.txt Event Count: 14144

Live intact singlets 011411-PBMC-X8-duplex-TmLu_cells_found.txt Event Count: 4519

Live intact singlets 011411-PBMC-X8-duplex-TmLu_cells_found.txt Event Count: 4519

Live-Dead

maleimide-DOTA

cisplatin

Normalization – EQ Four-Element Beads

Polystyrene beads: contain elemental Ce, Eu, Ho, Lu
 burn like cells, but are defined composition

Normalization Beads - Long Runtime Decrease in Signal Intensity

6:55 PM

Normalization Affects All Signals

Finck et al, Cytometry A, 2013

Signal Decrease Over Very Long Run-Times

- Single file: >2 million cells = >3 hr

* Highlights need for moving window normalization

Effects of Normalization

- Control sample split in half, run 8.5hr apart; ratio after manual gating

* Freq Parent fairly robust; only small gains from normalization * Median Intensity more affected by normalization (phosphoflow...)

Part 4 – Sample Running

Running Samples

- Warm up machine ~15-20 min to create and maintain fully hot and stable plasma
- 2. Tune machine –maximize M signal while minimizing M+16 oxide formation
- 3. Finish washing cells final wash in MilliQ water, then resuspension and dilution in MilliQ water.
 - residual buffer salts can affect Current value
- 4. Resuspend and filter immediately before injection
 - Reduces aggregates (clogs)
- 5. Appropriate dilution minimize doublets
 - Around 1 cell event/screen refresh; usually ~750K/mL on cell counter

Standard CyTOF Output Appearance

 Spike at ~0 is legitimate ("true zero")

- Flow data is usually distributed above and below zero due to comps and auto-fluorescence.

* FlowJo settings must be changed for CyTOF data

CyTOF vs LSRII – Representative Examples

Flu 2010-2011 - CyTOF Phenotyping Panel

- Collapse 6 tube LSRII panel into 1 tube CyTOF panel – 23 markers

CD14	CD45RA
CD33	CCR7
	CD25
CD3	CD127
CD4	CD27
CD8	CD28
TCRgd	CD38
	CD85j
CD19	
CD20	lgD
	HLADR
CD16	CD24
CD56	
	CD94
	CD161

Flu 2010, Flu 2011 Studies

- On-going Flu vaccine studies U19
- CyTOF Phenotyping 2010, 2011 years
 - Day 0 (pre-vaccination) only Study 15, 17, 18
 - Day 0, 1, 4, 7 Study 23-2011
- 2010-2011: >300 unique donors between-donor variability

	Ag	je Band (y	_	
	<35	Total		
Male	62	22	46	130
Female	84	47	65	196
Total	146	69	111	326

2010 Flu Studies – Consistency – 284 Control -Same Draw, Same Year Replicates

Flu 2011, 2012 Studies – Consistency – 885 Control

- Generally good year-to-year agreement from same 885 donor draw

Flu 2011, 2012 Studies – Consistency – 885 Control

- Sometimes greater variability in less-frequent populations

CD4+ Treg

Year

Flu 2010, Flu 2011 Studies – Donor Variability

Mann-Whitney two-tailed

*	<0.05
**	< 0.01
***	<0.001
****	< 0.0001

Flu 2010, Flu 2011 Studies – Donor Variability

Flu 2010, Flu 2011 Studies – Donor Variability

Gender and Age Band

Mann-Whitney two-tailed

< 0.05

< 0.01

< 0.001 < 0.0001

*

Study 23-2011

Conclusions

- 1. Proper tuning of the CyTOF ensures minimal sample oxidation.
- 2. Metal purity (both elemental and isotopic) is highly important.
- 3. The choice of metal label is dependent upon marker abundance, modality, and resolution needed (fold-change).
- 4. All samples must be stained with metals to be detected by the CyTOF. Proper fixation is important, as are MilliQ water washes.
- 5. Head-to-head comparisons with LSRII assays are consistent.
- 6. The Flu studies are an example of how a CyTOF panel can be used to monitor the surface phenotype for hundreds of donors to detect variations between gender, age-band, and time-point.

Acknowledgements

- HIMC staff

- Henrik Mei, Meena Malipotlalla, Holden Maecker
- External CyTOF:
 - Nolan lab: Sean Bendall, Erin Simonds, Eli Zunder, Bernd Bodenmiller
 - Davis lab: Evan Newell, Bill O'Gorman, Petter Brodin
 - Fluidigm/DVS Sciences
- U19 NIH Grants and HIMC Service Center fees

http://himc.stanford.edu