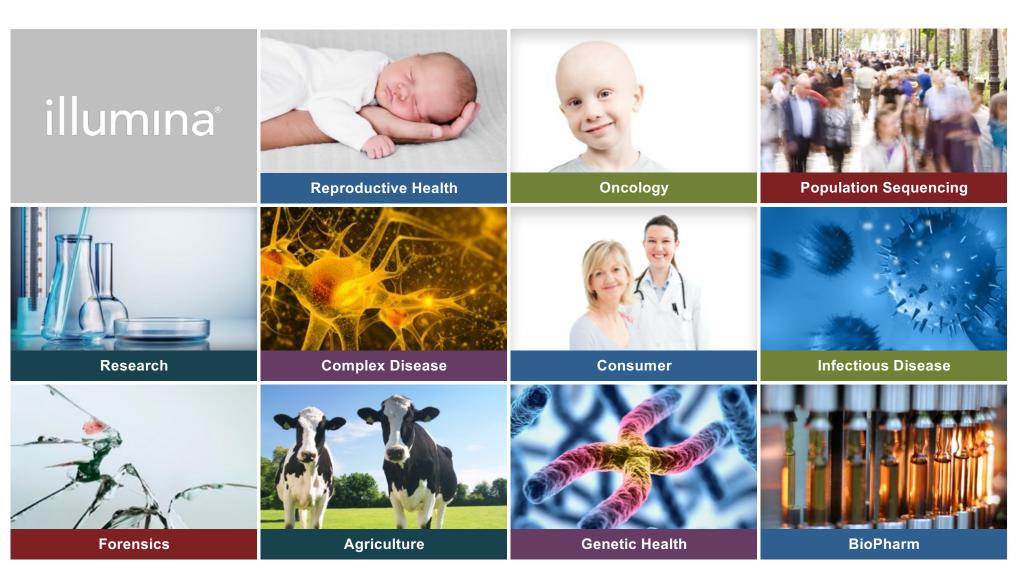
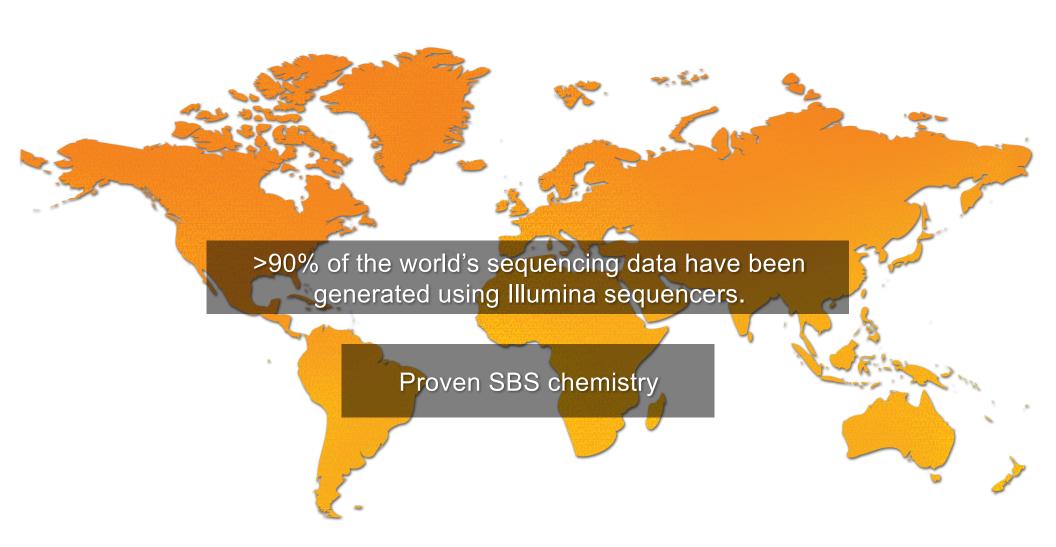

Empowering Genetic Discovery through the Illumina NextSeq System


Agenda Focus on NextSeq Applications

- Our Background and Mission
- Instrumentation
- WGS-large genomes, small genomes, metagenomics
- WES
- RNA-Seq
- Single-Cell
- Data Storage and Analysis
 - BaseSpace Sequence Hub



Who We Serve

Innovation drives expanding market opportunities

Sample to Answer Integration

From library prep to downstream informatics & knowledge generation

NextSeq 500-550

20-120 | Gigabases

130–400 million | reads

\$1040-4260 | run*

Up to 300 cycles (2 x 150 bp) 29hr run

Genomes, Exomes, Transcriptomes

Whole Genome

Human WGS

Complex Genomes

Small Genomes

- Cancer Genomics
- Variant Detection
- Genetic Risk Studies
- Population Genetics

- Agrigenomics (maize, wheat, bovine, etc.)
- Model Organisms (fruit fly, mouse, zebrafish, etc.)
- Plant/Animal Research

- Human Microbiome
- Microbiology
- Public Health Research
- Amplicon Sequencing
- Metagenomics

- Human Genome (3.2 Gb), NovaSeq[™] System, S2 Kit, 30x, 8 samples/flow cell
- Human Genome (3.2 Gb), HiSeq[™] X System, v2.5, 30x, 8 samples/flow cell
- Fruit Fly Genome (175 MB), NextSeq[™] 550 System, v2 Kit, 30x, 22 samples/flow cell
- Mouse Genome (2.7 Gb), HiSeq[™] 4000 System, v1 Kit, 30x, 8 samples/flow cell
- E.Coli (4.6 Mb), MiniSeq[™]
 System, 30x, 50
 samples/flow cell
- Plasmids/Amplicons (650 kb), MiSeq[™] System, 1000x, 11 samples/flow cell

Introducing Nextera[™] DNA Flex Library Prep

gDNA, Blood, Saliva, Microbes

gDNA

User guide & kit supported process

Blood

User guide & kit supported process

Blood input requires Illumina Flex lysis reagent

Blood punch card

Demonstrated protocols available at Illumina.com

Saliva

User guide & kit supported process

Saliva input requires Oragene saliva collection kit

Microbial colony

Demonstrated protocols available at Illumina.com

Isolate and purify DNA

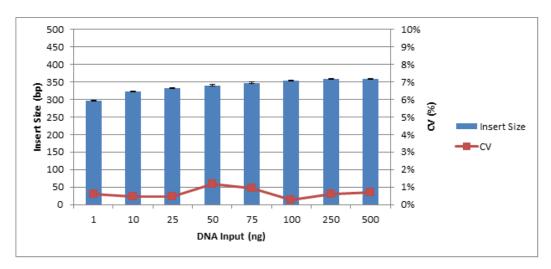
gDNA, blood, saliva, or microbe

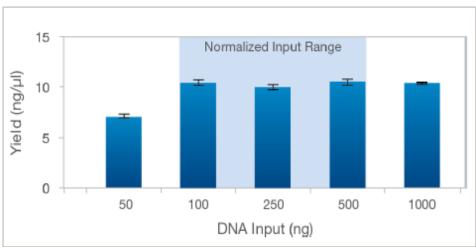
Add DNA to bead-linked transposomes (BLT)

Transposome attached to magnetic beads

DNA is tagmented and remains bound to the bead

No additional tagmentation can occur after bead saturation


Allowing a large DNA input range (1–500ng)


Resulting in consistent insert size and normalized libraries

Wide DNA Input and Normalized Libraries

Consistent insert sizes and Normalization

- Consistent insert size obtained with the use of a wide DNA input range
- Normalized libraries are be obtained with:
 - 100ng-500ng gDNA input
 - Use of the liquid blood, saliva, dried blood, or bacterial colony protocol

With Nextera DNA Flex, precise input quantification is not required to yield consistent DNA insert sizes and normalized libraries

extera[™] DNA Flex Library Prep Kit

DNA, Blood, Saliva, Microbes

- Three Key Points
- 1) Wide input range with consistent library sizes
- 2) Normalized ready to sequence libraries
- 3) 3.5 to 4 hours from sample to sequence ready libraries
- 4) Biological samples
- 5) WGS, Metagenomics, Amplicons (Ideal for the NextSeq)

DNA is tagmented and remains bound to the bead

Resulting in consistent insert size and normalized libraries

Whole Exome

Enabling High Performance Workflows for Exome Enrichment

Current

Decoupled Kit

Library Prep

xGen® Lockdown

Catalog Number

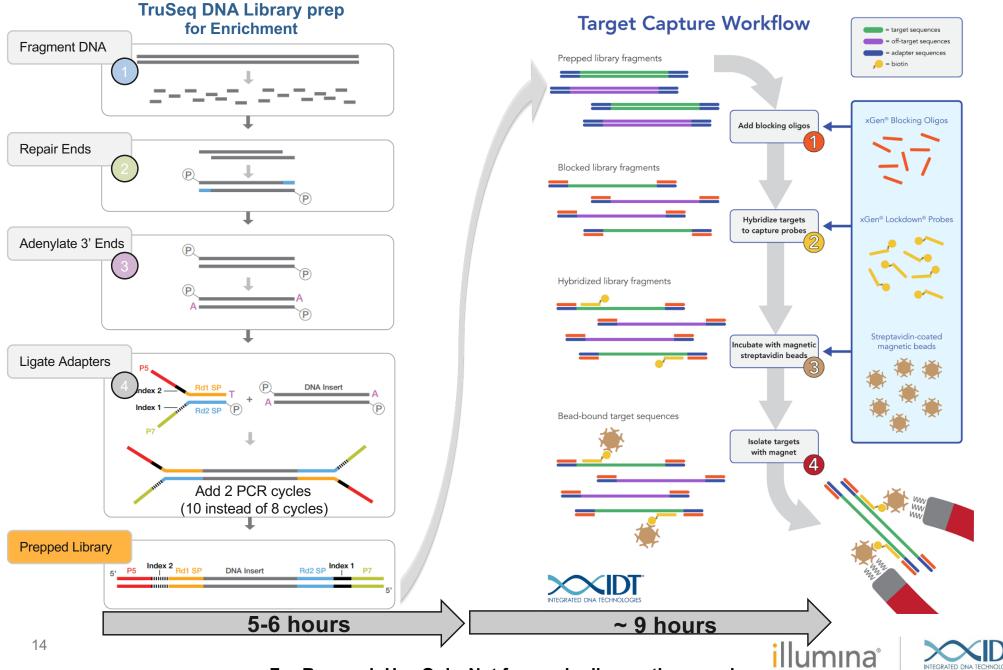
Illumina components

Indexed Adapters

xGen[®] Blocking Oligos

Purchase library prep and indexed adapters separately from Illumina

Purchase enrichment and panels from partners


Inclusive configurations

Modular configurations

TruSeq®-xGen® Exome Workflow

Efficiency Matters

On-target efficiency reduces sequencing required

	TruSeq Exome (Illumina)	TruSeq - xGen Exome (Illumina-IDT)
% On-Target Reads	>80%	>90%
Target coverage at 20X	>90%	>96%
Mean Coverage Required	100x	50x
Sequencing	8 Gb	3.5 Gb

Pool multiple pre-enrichment libraries to maximize throughput 55% fewer Gb of sequencing required*

Data generated from 23M reads (3.5Gb) on a HiSeq 2500 in Rapid Run Mode (TruSeq) or NextSeq High Output Mode (Nextera) using Enrichment 3.0 App on BaseSpace Sequence Hub. Data on file at Illumina 2017. Dataset available on BaseSpace.

^{*}Compares requirement of 8Gb of sequencing for TruSeg Exome enrichment workflow to 3.5Gb for xGen Exome Enrichment workflow to achieve over >90% of target coverage at 20x

Sequence More for Less

Load more samples per run

8Gb 4Gb (100x mean coverage) (50x mean coverage) NovaSeq™ 66* S2 HiSeq® 48 96 4000 HiSeq[®] 39 2500 NextSeq[®] 6

Price / Sample#

8Gb (100x mean covera	age) (50	4Gb x mean coverage)
\$284		\$142
\$236		\$118
\$509		\$277
\$464		\$232

Exomes / Flowcell&

[&]amp; Human 48Mb exome at 100X mean coverage

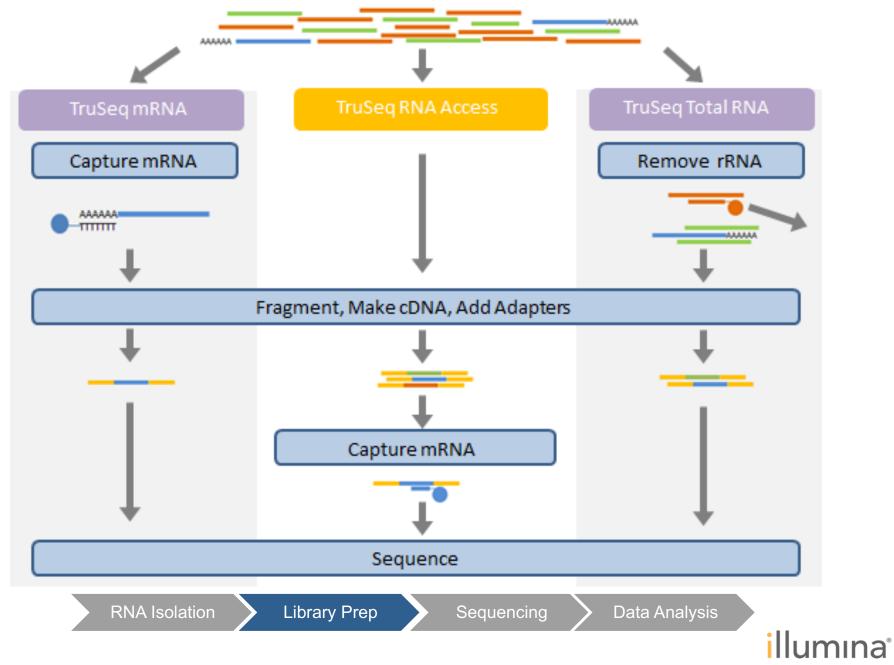
[#] Sequencing cost only; library prep not included. Sequencing reagent cost in USD divided by number of samples.

^{*} Pending release of individual addressable lanes

RNA-Seq

Illumina's Suite of RNA Library Prep Solutions

Total RNA-Seq	mRNA-Seq/ GEx Profiling		Targeted Profiling	miRNA Analysis
TruSeq Stranded Total RNA	TruSeq Stranded mRNA	TruSeq Stranded RNA Access	TruSeq Targeted RNA Expression	TruSeq small RNA
 Coding + ncRNA Transcript-level abundance Splicing Analysis Fusion Discovery FFPE compatible Any species 	 Coding RNA Transcript-level abundance Splicing Analysis Fusion Discovery 	 Human Exonic RNA Transcript-level abundance Splicing Analysis Fusion Discovery FFPE Compatible 	 10s-1,000s of targets Max 384 samples Coding + ncRNA Transcript-level abundance Fusion Validation FFPE Compatible 	 miRNA abundance miRNA discovery



RNA Library Prep Chemistries

TruSeq Stranded mRNA

PolyA RNA-Seq for Cost Effective Transcriptomes

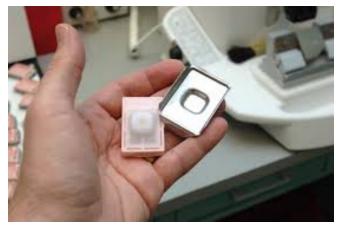
- **PolyA** pull down for quantification of mRNAs in eukaryotic samples
- Quick and **cost effective** library prep
- Maintains strand information for delineation of sense/antisense transcription
- Requires ~25M reads for average mammalian studies

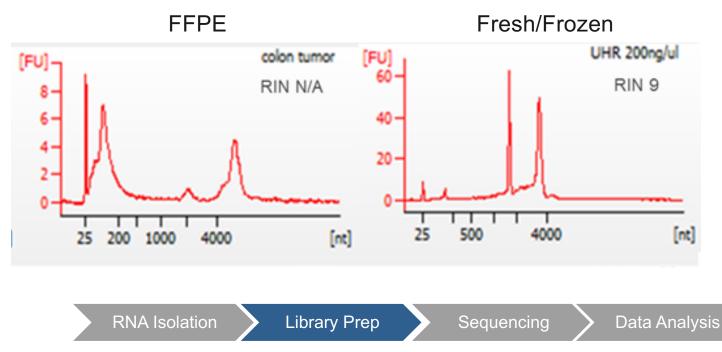
TruSeq Total RNA

Versatile solution for discovery

- Ribosomal depletion allows use across many organisms and cell types
- Provides high quality results, from low quality samples, including FFPE
- Requires ~50M reads for average mammalian studies

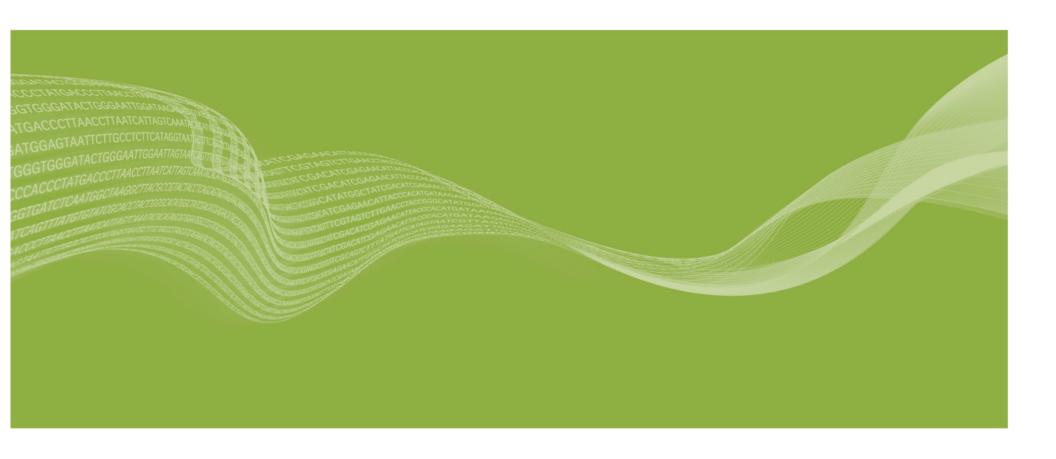
Ribo-Zero depletion can target human, mouse, rat, plant, globin, gram negative and gram positive bacteria, yeast, drosophila, cow, dog, epidemiological mixes, and more!


RNA Isolation Library Prep Sequencing Data Analysis



TruSeq RNA Exome

Quality data from degraded and low input human RNA


- TruSeq RNA Access enriches for the human exonic RNA from degraded/lot input samples
- Requires 10ng fresh RNA, as low as 20-100ng FFPE RNA
- Correlates with mRNA and Total RNA data

Hot Topic: Single Cell RNA-Seq

Single Cell Analysis

Droplet Barcoding for Single-Cell Transcriptomics

Applied to Embryonic Stem Cells

Allon M. Klein, 1,6 Linas Mazutis, 2,3,6 Ilke Akartuna, 2,6 Naren Tallapragada, 1 F David A. Weitz, 2,* and Marc W. Kirschner 1,*

Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation

Aleksandra A. Kolodziejczyk, ^{1,2,5} Jong Kyoung Kim, ^{1,5} Jason C.H. Tsang, ² Tomislav Ilicic, ^{1,2} Johan Henriksson, ¹ Kedar N. Natarajan, ^{1,2} Alex C. Tuck, ^{1,3} Xuefei Gao, ² Marc Bühler, ³ Pentao Liu, ² John C. Marioni, ^{1,2,4,*} and Sarah A. Teichmann ^{1,2,*}

Kolodziejczyk et al., 2015, Cell Stem Cell

Single-cell messenger RNA sequencing reveals rare intestinal cell types

Dominic Grün, Anna Lyubimova, Lennart Kester, Kay Wiebrands, Onur Basak, Nobuo Sasaki, Hans Clevers & Alexander van Oudenaarden

Grun et. al., Nature Letters, 2015

Encapsulation in droplets Reverse transcription reaction in droplets hydrogels hydrogels hydrogels Library preparation cell ysis / RT mix Library preparation Sequencing and Analysis Cell sub-populations Cell sub-populations Expression covariation Expression covariation Timzes Expression Covariation Covariation

Klein et. al., Cell, 2015

Transcriptome *in vivo* analysis (TIVA) of spatially defined single cells in live tissue

Ditte Lovatt, Brittani K Ruble, Jaehee Lee, Hannah Dueck, Tae Kyung Kim, Stephen Fisher, Chantal Francis, Jennifer M Spaethling, John A Wolf, M Sean Grady, Alexandra V Ulyanova, Sean B Yeldell, Julianne C Griepenburg, Peter T Buckley, Junhyong Kim, Jai-Yoon Sul, Ivan J Dmochowski & James Eberwine

Lovatt et. al., Nature Methods, 2014

Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation

Hannah Dueck¹, Mugdha Khaladkar², Tae Kyung Kim^{3,4}, Jennifer M. Spaethling³, Chantal Francis², Sangita Suresh^{5,6}, Stephen A. Fisher², Patrick Seale⁷, Sheryl G. Beck⁸, Tamas Bartfai¹¹, Bernhard Kuhn^{5,6,9,10,12}, James Eberwine^{3†} and Junhyong Kim^{2*†}

Dueck et. al., Genome Biology, 2015

CrossMark

Single Cell Analysis

Nat Biotechnol, 2018 Mar 28. doi: 10.1038/nbt.4103. [Epub ahead of print]

Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain.

Raj B^{1,2}, Wagner DE³, McKenna A^{2,4}, Pandey S¹, Klein AM³, Shendure J^{2,4,5}, Gagnon JA^{1,2,6}, Schier AF^{1,2,7,8,9,10}.

Trends Cancer. 2018 Apr;4(4):264-268. doi: 10.1016/j.trecan.2018.02.003. Epub 2018 Mar 9.

Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.

Levitin HM1, Yuan J1, Sims PA2.

Elife. 2018 Mar 27;7. pii: e33105. doi: 10.7554/eLife.33105.

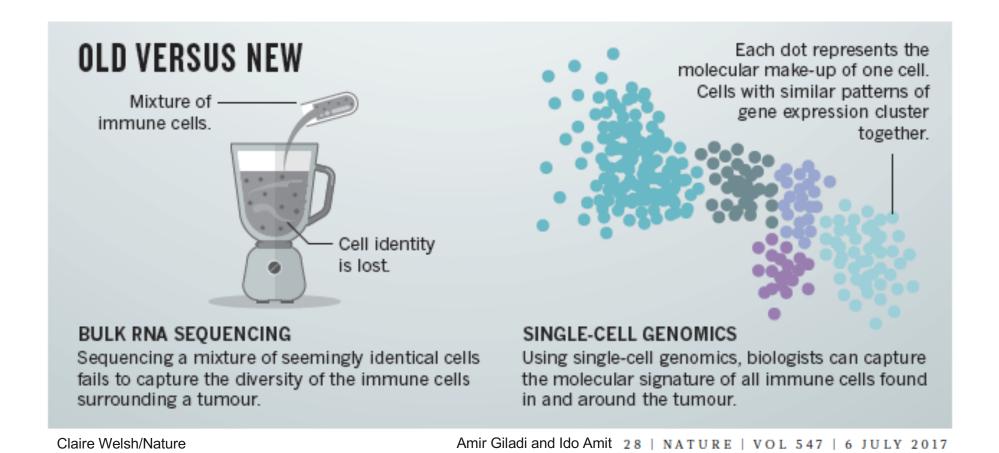
Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites.

Reid AJ#1, Talman AM#1, Bennett HM#1, Gomes AR1, Sanders MJ1, Illingworth CJR2, Billker O1, Berriman M1, Lawniczak MK1.

Stem Cell Reports. 2018 Mar 20. pii: S2213-6711(18)30107-3. doi: 10.1016/j.stemcr.2018.03.001. [Epub ahead of print]

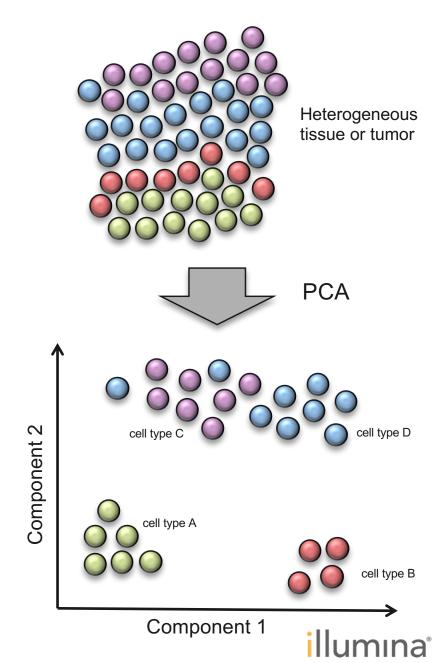
Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling.

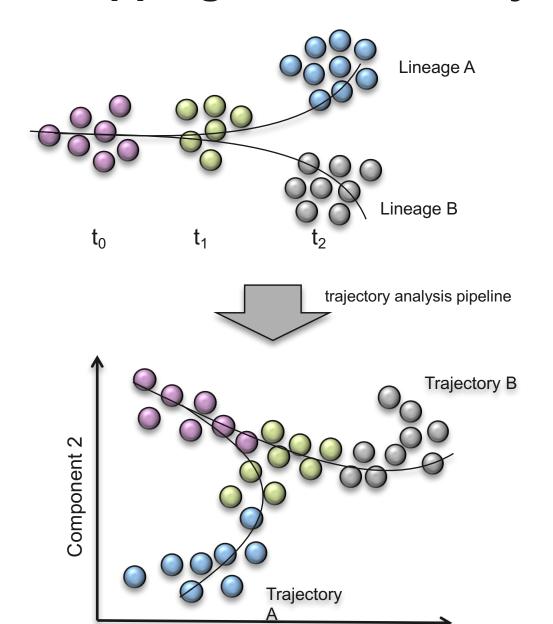
Colacino JA¹, Azizi E², Brooks MD², Harouaka R², Fouladdel S², McDermott SP², Lee M³, Hill D³, Madden J⁴, Boerner J⁴, Cote ML⁵, Sartor MA⁶, Rozek LS⁷, Wicha MS⁸.


Nat Genet. 2018 Apr 2. doi: 10.1038/s41588-018-0089-9. [Epub ahead of print]

Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs.

van der Wijst MGP¹, Brugge H¹, de Vries DH¹, Deelen P¹, Swertz MA¹; LifeLines Cohort Study; BIOS Consortium, Franke L².

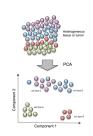

Bulk vs Single-Cell Genomics



Assessing Cell-to-Cell Heterogeneity

- Understand composition of complex cell mixtures
- Discover rare cell types
- Determine ratios of cell types within a complex tissue or tumor
- Determine specific cell types driving a disease pathology

Mapping of Cellular Trajectories


Component 1

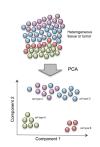
- Time series data to map cell developmental trajectories over a dynamic process
- Study of differentiation over time
- Study signal responses to external stimuli ex: drugs, heat, etc...

Trapnell, et. al. F1000 Research, 2016

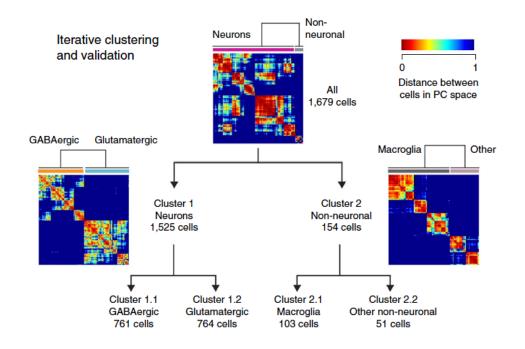

Assessing Heterogeneity in Cancer

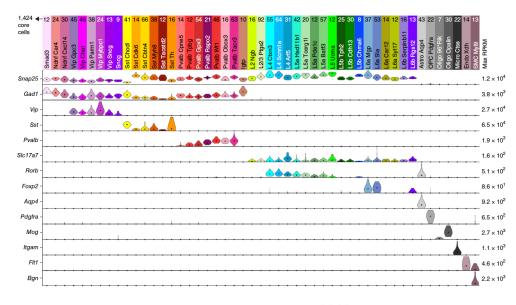
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

Itay Tirosh, ^{1*} Benjamin Izar, ^{1,2,3*} † Sanjay M. Prakadan, ^{1,4,5,6} Marc H. Wadsworth II, ^{1,4,5,6} Daniel Treacy, ¹ John J. Trombetta, ¹ Asaf Rotem, ^{1,2} Christopher Rodman, ¹ Christine Lian, ⁷ George Murphy, ⁷ Mohammad Fallahi-Sic Ken Dutton-Regester, ^{1,2,9} Jia-Ren Lin, ¹⁰ Offir Cohen, ¹ Parin Shah, ² Diana Lu, ¹ Alex S. Genshaft, ^{1,4,5,6} Travis K. Hughes, ^{1,4,6,11} Carly G. K. Ziegler, ^{1,4,6,11} Samuel W. Kazer, ^{1,4,5,6} Aleth Gaillard, ^{1,4,5,6} Kellie E. Kolb, ^{1,4,5,6} Alexandra-Chloé Villani, ¹ Cory M. Johannessen, ¹ Aleksandr Y. Andreev, ¹ Eliezer M. Van Allen, ^{1,2,3} Monica Bertagnolli, ^{1,2,13} Peter K. Sorger, ^{8,10,14} Ryan J. Sullivan, ¹⁵ Keith T. Flaherty, ¹⁵ Dennie T. Frederick, ¹⁵ Judit Jané-Valbus Charles H. Yoon, ^{12,13+} † Orit Rozenblatt-Rosen, ^{1†} Alex K. Shalek, ^{1,4,5,6,11,16} † Aviv Regev, ^{1,17,18} † Levi A. Garraway^{1,2,3,14} † †


- Used single-cell whole exome and whole transcriptome
- Cells grouped into clusters based on CNV

Tirosh et al., 2016, Science



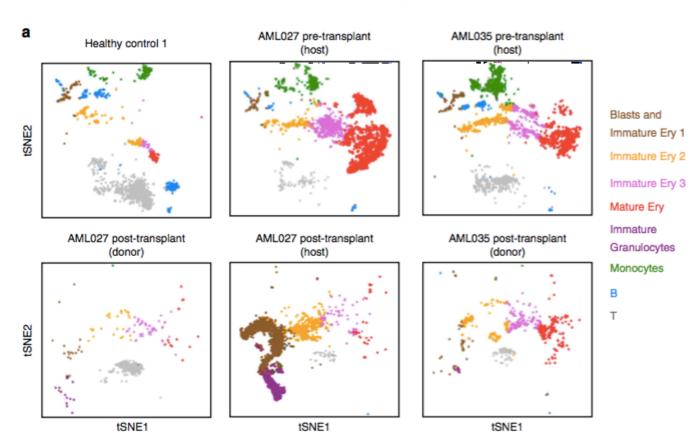

Revealing Cellular Taxonomy

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Bosiljka Tasic^{1,2}, Vilas Menon^{1,2}, Thuc Nghi Nguyen¹, Tae Kyung Kim¹, Tim Jarsky¹, Zizhen Yao¹, Boaz Levi¹, Lucas T Gray¹, Staci A Sorensen¹, Tim Dolbeare¹, Darren Bertagnolli¹, Jeff Goldy¹, Nadiya Shapovalova¹, Sheana Parry¹, Changkyu Lee¹, Kimberly Smith¹, Amy Bernard¹, Linda Madisen¹, Susan M Sunkin¹, Michael Hawrylycz¹, Christof Koch¹ & Hongkui Zeng¹

Tasic et al., 2016, Nature Neuroscience

ARTICLE


Received 20 Sep 2016 | Accepted 23 Nov 2016 | Published 16 Jan 2017

DOI: 10.1038/ncomms14049

OPEN

Massively parallel digital transcriptional profiling of single cells

Grace X.Y. Zheng¹, Jessica M. Terry¹, Phillip Belgrader¹, Paul Ryvkin¹, Zachary W. Bent¹, Ryan Wilson¹, Solongo B. Ziraldo¹, Tobias D. Wheeler¹, Geoff P. McDermott¹, Junjie Zhu¹, Mark T. Gregory², Joe Shuga¹, Luz Montesclaros¹, Jason G. Underwood^{1,3}, Donald A. Masquelier¹, Stefanie Y. Nishimura¹,

Hot Single-Cell Applications

Single-Cell Pooled CRISPR Screens

Single-Nuclei sequencing

Single-Cell T Cell or B Cell Receptor Sequencing

Single-Cell ATAC-seq

Single-Cell Epitope Detection

Single-Cell Multiplexing, Multiplet Detection, and Batch Effect

Single-Cell Preservation methods and considerations

SNV detection in Single Cell DNA

Sequence Hub Cloud

Simplifying bioinformatics

Multiple Layers of Security

Secure Data

- Data encrypted in transit, Genomic data encrypted at rest,
- Access control, activity logging

Secure Employees

- Background checks, training on secure development
- Training on HIPAA

Secure Physical Environment

- Built on AWS, ISO 27001 certified data centers

Secure Application

- Code reviews, penetration testing

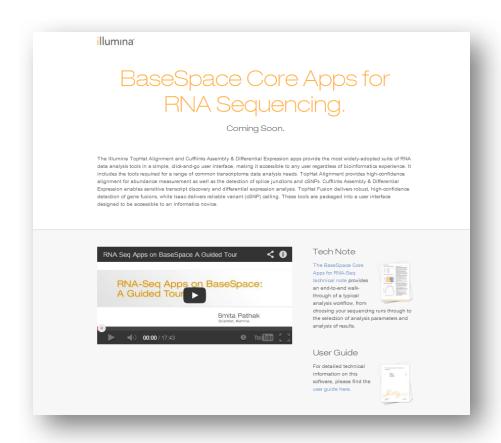
Four Key Features

Plug and play with tight instrument integration

Easy sharing and collaboration worldwide

Simple push-button analysis with public and private analysis tools

Advanced automation and integration

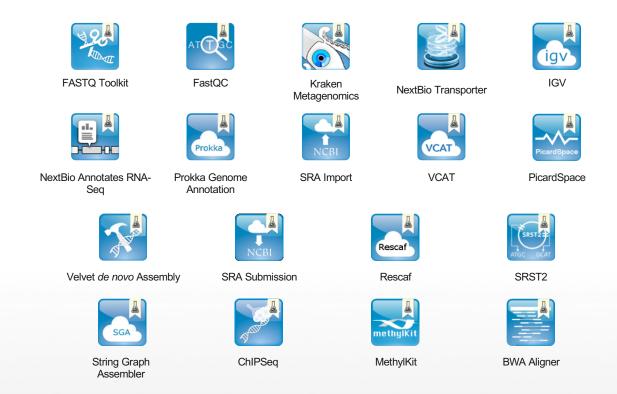


Getting started with BaseSpace

Register for a free account

Basespace.illumina.com

- Import free public data in to your account
- Peruse an app catalog of 90+ and growing push-button analysis pipelines



Simple push-button analysis with public and private analysis tools

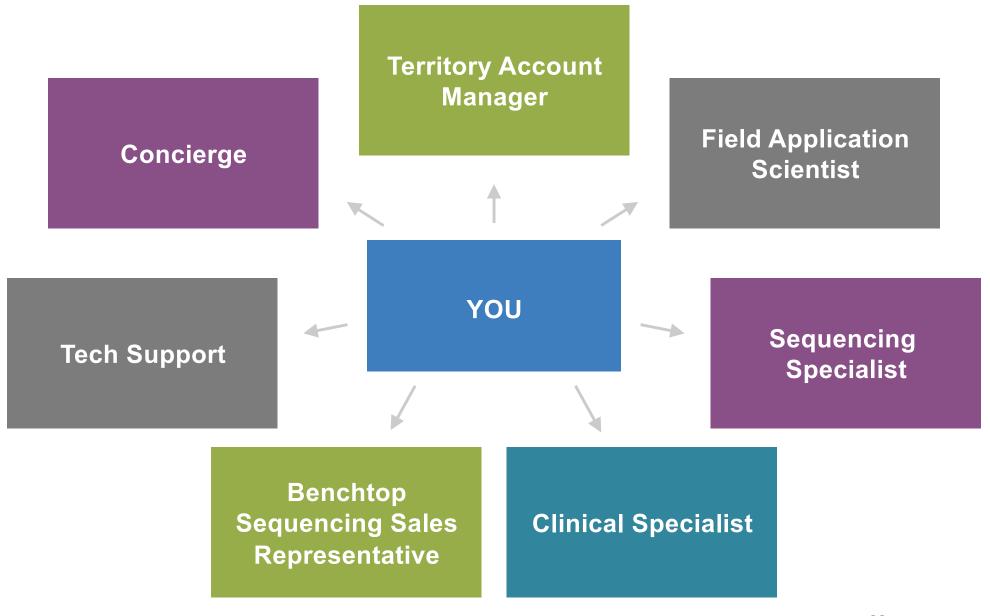
- Over 90 published Apps supporting all of Illumina library prep kits
 - TruSeq Amplicon, TruSeq Targeted RNA, TruSight RNA Pan-Cancer, TruSight Tumor 15

18 Sequence Hub Labs Apps

Simple push-button analysis with public and private analysis tools

- Over 90 published Apps supporting all of Illumina library prep kits
 - TruSeq Amplicon, TruSeq Targeted RNA, TruSight RNA Pan-Cancer, TruSight Tumor 15

34 Third-Party Apps


In Closing...

NextSeq ideal for:

- WGS (small to medium sized genomes, metagenomics)
- WES
- RNA-Seq
- Single-Cell
- Core lab is ready and able... now

We are Here for You!

