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editorial

But despite perennial grumbling about inadequate statis-
tical competence among biological researchers, statistics 
training is often not part of the core course requirements 
in biological graduate programs.

A challenge to providing universal training is the diffi-
culty in offering a single course that covers the technical 
requirements of different fields of biology and provides 
engaging teaching examples that all students can relate 
to. Statistics training is thus often relegated to required 
discipline-specific methodology courses, or students 
must take available statistics electives. As a result, a sub-
stantial number of practicing researchers in biology end 
up with no formal statistics training.

Basic training in experimental design and statistics 
should be required in all graduate programs that fre-
quently lead to careers in biological research. Scientific 
ethics courses are now a core part of many graduate 
biomedical programs. These could integrate instruc-
tion about experimental design and basic statistics to 
complement ethical considerations in making impor-
tant decisions at each stage of a research project regard-
ing trade-offs among sample size, methodologies and 
available time and resources. Because those decisions 
are intimately connected to the reliability of the results, 
they possess an inherent ethical element that may not be 
appreciated by researchers anxious to get results. Tying 
experimental design and statistics to discussion of sci-
entific ethics could lead to greater appreciation of their 
importance. However, the move in the United States to 
external online courses for ethics training makes this 
fusion difficult; thus, a better solution is a dedicated 
experimental design course that presents design, statis-
tics and ethics in a holistic manner.

But what should practicing researchers with no formal 
training in statistics do? There is no shortage of statis-
tics books targeted at biologists. A search of Amazon.
com using “statistics for biology” gives no less than 3,000 
results, with the top result appropriately titled Statistics 
for Terrified Biologists. Online courses are another option 
for obtaining the necessary minimum training, but it is 
difficult for someone immersed in research to make the 
time commitment either option requires.

We hope that by following in the footsteps of the suc-
cessful Points of View column on visualization—now 
organized for browsing on Methagora—that the new 
Points of Significance column can fill a need and encour-
age both busy researchers and students to think more 
about statistics and gain a deeper appreciation of how 
they can improve the experimental rigor of their work.

Concerns about data quality and reproducibility in bio-
medical research have been rising. This May, Nature 
Publishing Group put in place new reporting standards 
for the research we publish. At the core of these standards 
is a document that asks authors to disclose technical and 
statistical information about their study. But because these 
reporting requirements come after research is completed 
and the manuscript is written and submitted for publica-
tion, they do not actually affect experimental design but 
rather serve to better expose the existing level of rigor to 
reviewers and readers.

In an effort to give these topics the attention they deserve 
and help researchers at the stage of experimental planning 
and design, we debut a new column: Points of Significance. 
The column will present important concepts and practical 
advice about statistics and experimental design in an easily 
digestible format.

As biological researchers apply increasingly refined 
techniques such as targeted genome engineering that are 
likely to yield smaller but more biologically meaning-
ful effects, study design and analysis decisions are more 
important than ever. Experimentalists are also examining 
systems at a depth that is orders of magnitude greater than 
that of just five years ago. Analyzing such data will require 
pushing the envelope in experimental design standards 
and analysis.

Fortunately, the necessary understanding of basic con-
cepts of variability, effect size and experimental design 
essential for guiding good experimental practice can 
be gained with minimal mathematical sophistication. 
For much bench research, these fundamental principles 
inform the design of valid replicable experiments that 
can be analyzed using standard techniques. But scientists 
should also know enough to realize when their level of 
training is insufficient and it is time to talk to a statisti-
cian. For large studies, a discussion with a statistician at 
the study design stage—as is commonly done for clinical 
studies—can save resources and money and prevent angst.

A considerable amount of basic research flies by the 
seat of its pants, performed while techniques are still being 
developed and while it isn’t yet known whether usable data 
will be forthcoming. In these cases, in which statistical con-
sultation may be difficult or inefficient, a basic understand-
ing of statistical concepts can help guide the experimental 
process and allow the researcher to avoid unproductive or 
misleading paths of investigation.

Because our intuition about probability can be misguided  
(p. 809), some form of training is essential for developing a 
good grasp of fundamental statistical concepts and practice.  

Matters of significance
Sound experimental design and analysis require improved statistical training. 
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Points of Significance

Importance of being 
uncertain
Statistics does not tell us whether we are right. It tells 
us the chances of being wrong.

When an experiment is reproduced we almost never obtain exactly 
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring 
equipment. But if results are different each time, how do we determine 
whether a measurement is compatible with our hypothesis? In “the 
great tragedy of Science—the slaying of a beautiful hypothesis by an 
ugly fact”1, how is ‘ugliness’ measured?

Statistics helps us answer this question. It gives us a way to quanti-
tatively model the role of chance in our experiments and to represent 
data not as precise measurements but as estimates with error. It also 
tells us how error in input values propagates through calculations. 
The practical application of this theoretical framework is to associate 
uncertainty to the outcome of experiments and to assign confidence 
levels to statements that generalize beyond observations.

Although many fundamental concepts in statistics can be under-
stood intuitively, as natural pattern-seekers we must recognize the 
limits of our intuition when thinking about chance and probability. 
The Monty Hall problem is a classic example of how the wrong 
answer can appear far too quickly and too credibly before our eyes. 
A contestant is given a choice of three doors, only one leading to 
a prize. After selecting a door (e.g., door 1), the host opens one of 
the other two doors that does not lead to a prize (e.g., door 2) and 
gives the contestant the option to switch their pick of doors (e.g., 
door 3). The vexing question is whether it is in the contestant’s 
best interest to switch. The answer is yes, but you would be in good 
company if you thought otherwise. When a solution was published 
in Parade magazine, thousands of readers (many with PhDs) wrote 
in that the answer was wrong2. Comments varied from “You made 
a mistake, but look at the positive side. If all those PhDs were 
wrong, the country would be in some very serious trouble” to “I 
must admit I doubted you until my fifth grade math class proved 
you right”2.

The Points of Significance column will help you move beyond an 
intuitive understanding of fundamental statistics relevant to your 
work. Its aim will be to address the observation that “approximate-
ly half the articles published in medical journals that use statistical 
methods use them incorrectly”3. Our presentation will be practical 
and cogent, with focus on foundational concepts, practical tips and 
common misconceptions4. A spreadsheet will often accompany each 
column to demonstrate the calculations (Supplementary Table 1). 
We will not exhaust you with mathematics.

Statistics can be broadly divided into two categories: descriptive and 
inferential. The first summarizes the main features of a data set with 
measures such as the mean and standard deviation (s.d.). The second 
generalizes from observed data to the world at large. Underpinning 
both are the concepts of sampling and estimation, which address the 
process of collecting data and quantifying the uncertainty in these 
generalizations.

To discuss sampling, we need to introduce the concept of a popula-
tion, which is the set of entities about which we make inferences. The 
frequency histogram of all possible values of an experimental variable 
is called the population distribution (Fig. 1a). We are typically inter-
ested in inferring the mean (μ) and the s.d. (s) of a population, two 
measures that characterize its location and spread (Fig. 1b). The mean 
is calculated as the arithmetic average of values and can be unduly 
influenced by extreme values. The median is a more robust measure 

of location and more suitable for distributions that are skewed or oth-
erwise irregularly shaped. The s.d. is calculated based on the square 
of the distance of each value from the mean. It often appears as the 
variance (s2) because its properties are mathematically easier to for-
mulate. The s.d. is not an intuitive measure, and rules of thumb help us 
in its interpretation. For example, for a normal distribution, 39%, 68%, 
95% and 99.7% of values fall within ± 0.5s, ± 1s, ± 2s and ± 3s. These 
cutoffs do not apply to populations that are not approximately normal, 
whose spread is easier to interpret using the interquartile range.

Fiscal and practical constraints limit our access to the popula-
tion: we cannot directly measure its mean (μ) and s.d. (s). The best 
we can do is estimate them using our collected data through the 
process of sampling (Fig. 2). Even if the population is limited to 
a narrow range of values, such as between 0 and 30 (Fig. 2a), the 

random nature of sampling will impart uncertainty to our estimate 
of its shape. Samples are sets of data drawn from the population  
(Fig. 2b), characterized by the number of data points n, usually 
denoted by X and indexed by a numerical subscript (X1). Larger 
samples approximate the population better.

To maintain validity, the sample must be representative of the popu-
lation. One way of achieving this is with a simple random sample, 
where all values in the population have an equal chance of being 
selected at each stage of the sampling process. Representative does 
not mean that the sample is a miniature replica of the population. In 
general, a sample will not resemble the population unless n is very 
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Figure 1 | The mean and s.d. are commonly used to characterize the 
location and spread of a distribution. When referring to a population, these 
measures are denoted by the symbols m and s.

Figure 2 | Population parameters are estimated by sampling. (a) Frequency 
histogram of the values in a population. (b) Three representative samples 
taken from the population in a, with their sample means. (c) Frequency 
histogram of means of all possible samples of size n = 5 taken from the 
population in a.
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside m ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, mX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by mX–   = m and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 
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Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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size drawn from the distribution in Figure 2a. As n is increased, 
–
X   and s more 

closely approximate m and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.
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results, when the researcher may be willing to pursue low-
likelihood hypotheses for a groundbreaking discovery (Fig. 1).  
One analysis of the medical research literature found that only 
36% of the experiments examined that had negative results could 
detect a 50% relative difference at least 80% of the time2. More 
recent reviews of the literature1,3 also report that most studies are 
underpowered. Reduced power and an increased number of false 
negatives is particularly common in omics studies, which test at 
very small significance levels to reduce the large number of false 
positives.

Studies with inadequate power are a waste of research resources 
and arguably unethical when subjects are exposed to potentially 
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for 
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample 
size chosen to ensure adequate power to detect a pre-specified 
effect size?” Here we discuss inference errors and power to help 
you answer this question. We’ll focus on how the sensitivity and 
specificity of an experiment can be balanced (and kept high) and 
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s 
expression level x against an assumed reference level m0. We devel-
oped the idea of a null distribution, H0, and said that x was statis-
tically significantly larger than the reference if it exceeded some 
critical value x* (Fig. 2a). If such a value is observed, we reject H0 
as the candidate model.

Because H0 extends beyond x*, it is possible to falsely reject H0, 
with a probability of a (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is 
actually none. In good experimental design, a is controlled and set 
low, traditionally at a = 0.05, to maintain a high specificity (1 – a), 
which is the chance of a true negative—that is, correctly inferring 
that no effect exists.

Let’s suppose that x > x*, leading us to reject H0. We may have 
found something interesting. If x is not drawn from H0, what 
distribution does it come from? We can postulate an alternative 
hypothesis that characterizes an alternative distribution, HA, for 
the observation. For example, if we expect expression values to be 
larger by 20%, HA would have the same shape as H0 but a mean 
of mA = 12 instead of m0 = 10 (Fig. 2b). Intuitively, if both of these 
distributions have similar means, we anticipate that it will be more 
difficult to reliably distinguish between them. This difference 
between the distributions is typically expressed by the difference 
in their means, in units of their s.d., s. This measure, given by  

Points of SIGNIFICANCE

Power and sample size
The ability to detect experimental effects is 
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data 
are or are not typical of the values expected when the hypothesis 
is true. Because our objective is usually to detect a departure from 
the null hypothesis, it is useful to define an alternative hypothesis 
that expresses the distribution of observations when the null is false. 
The difference between the distributions captures the experimental 
effect, and the probability of detecting the effect is the statistical 
power.

Statistical power is critically relevant but often overlooked. When 
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies, 
a large percentage of the significant results may be wrong. Figure 1 
illustrates this by showing the proportion of inference outcomes in 
two sets of experiments. In the first set, we optimistically assume 
that hypotheses have been screened, and 50% have a chance for an 
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the 
median in a recent review of neuroscience literature1, then 80% of 
true positive results will be missed, and 20% of positive results will 
be wrong (positive predictive value, PPV = 0.80), assuming testing 
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression 
studies), it is not unusual for fewer than 10% of the outcomes to 
have an a priori chance of an effect. If 90% of hypotheses are null 
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even 
at the conventionally acceptable minimum power of 0.8, more 
than one-third of positive results are wrong (PPV = 0.64) because 
although we detect a greater fraction of the true effects (8 out of 
10), we declare a larger absolute number of false positives (4.5 out 
of 90 nulls).

Fiscal constraints on experimental design, together with 
a commonplace lack of statistical rigor, contribute to many 
underpowered studies with spurious reports of both false 
positive and false negative effects. The consequences of low 
power are particularly dire in the search for high-impact 
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Figure 1 | When unlikely hypotheses are tested, most positive results of 
underpowered studies can be wrong. (a) Two sets of experiments in which 50% 
and 10% of hypotheses correspond to a real effect (blue), with the rest being 
null (green). (b) Proportion of each inference type within the null and effect 
groups encoded by areas of colored regions, assuming 5% of nulls are rejected 
as false positives. The fraction of positive results that are correct is the 
positive predictive value, PPV, which decreases with a lower effect chance.

Figure 2 | Inference errors and statistical power. (a) Observations are 
assumed to be from the null distribution (H0) with mean m0. We reject H0 
for values larger than x* with an error rate a (red area). (b) The alternative 
hypothesis (HA) is the competing scenario with a different mean mA. Values 
sampled from HA smaller than x* do not trigger rejection of H0 and occur 
at a rate b. Power (sensitivity) is 1 – b (blue area). (c) Relationship of 
inference errors to x*. The color key is same as in Figure 1.
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H0 rejection cutoff, x*. The S-shape of the power curve reflects 
the rate of change of the area under HA beyond x*. The close cou-
pling between a and power suggests that for mA = 12 the highest 
power we can achieve for a ≤ 0.05 is 0.64. How can we improve our 
chance to detect increased expression from HA (increase power) 
without compromising a (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap 
would be reduced, a greater fraction of HA would lie beyond the 
x* cutoff and power would be improved. We can’t do much about 
s, although we could attempt to lower it by reducing measurement 
error. A more direct way, however, is to take multiple samples. 
Now, instead of using single expression values, we formulate null 
and alternative distributions using the average expression value 
from a sample x̄ that has spread s/√n (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H0 and HA. As n is increased, the  
H0 rejection cutoff is decreased in proportion with the s.e.m., 
reducing the overlap between the distributions. Sample size 
substantially affects power in our example. If we average seven 
measurements (n = 7), we are able to detect a 10% increase 
in expression levels (mA = 11, d = 1) 84% of the time with a = 
0.05. By varying n we can achieve a desired combination of 
power and a for a given effect size, d. For example, for d = 1, a  
sample size of n = 22 achieves a power of 0.99 for a = 0.01.

Another way to increase power is to increase the size of the 
effect we want to reliably detect. We might be able to induce a 
larger effect size with a more extreme experimental treatment. As 
d is increased, so is power because the overlap between the two 
distributions is decreased (Fig. 4b). For example, for a = 0.05  
and n = 3, we can detect mA = 11, 11.5 and 12 (10%, 15% and 20% 
relative increase; d = 1, 1.5 and 2) with a power of 0.53, 0.83 and 0.97, 
respectively. These calculations are idealized because the exact shapes 
of H0 and HA were assumed known. In practice, because we estimate 
population s from the samples, power is decreased and we need a 
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good 
study design. We begin by setting the values of type I error (a) and 
power (1 – b) to be statistically adequate: traditionally 0.05 and 
0.80, respectively. We then determine n on the basis of the smallest 
effect we wish to measure. If the required sample size is too large, 
we may need to reassess our objectives or more tightly control the 
experimental conditions to reduce the variance. Use the interactive 
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and 
negative results cannot be reliably interpreted. Ensuring that sample  
sizes are large enough to detect the effects of interest is an essential 
part of study design.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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d = (mA – m0)/s, is called the effect size. Sometimes effect size is 
combined with sample size as the noncentrality parameter, d√n.

In the context of these distributions, power (sensitivity) is defined as 
the chance of appropriately rejecting H0 if the data are drawn from HA. 
It is calculated from the area of HA in the H0 rejection region (Fig. 2b). 
Power is related by 1 – b to the type II error rate, b, which is the chance 
of a false negative (not rejecting H0 when data are drawn from HA).

A test should ideally be both sensitive (low false positive rate, a) 
and specific (low false negative rate, b). The a and b rates are inversely 
related: decreasing a increases b and reduces power (Fig. 2c). Typically,  
a < b because the consequences of false positive inference (in an 
extreme case, a retracted paper) are more serious than those of false 
negative inference (a missed opportunity to publish). But the balance 
between a and b depends on the objectives: if false positives are subject 
to another round of testing but false negatives are discarded, b should 
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set a = 0.05 and assume 
normal H0 with s = 1, then we reject H0 when x > 11.64 (Fig. 3a).  
The fraction of HA beyond this cutoff region is the power (0.64). 
We can increase power by decreasing sensitivity. Increasing a to 
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25% 
increase in power has come at a cost: we are now more than twice as 
likely to make a false positive claim (a = 0.12 vs. 0.05).

Figure 3b shows the relationship between a and power for our 
single expression measurement as a function of the position of 
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Figure 3 | Decreasing specificity increases power. H0 and HA are assumed 
normal with s = 1. (a) Lowering specificity decreases the H0 rejection cutoff 
x*, capturing a greater fraction of HA beyond x*, and increases the power 
from 0.64 to 0.80. (b) The relationship between specificity and power as a 
function of x*. The open circles correspond to the scenarios in a.

Figure 4 | Impact of sample (n) and effect size (d) on power. H0 and HA 
are assumed normal with s = 1. (a) Increasing n decreases the spread 
of the distribution of sample averages in proportion to 1/√n. Shown are 
scenarios at n = 1, 3 and 7 for d = 1 and a = 0.05. Right, power as function 
of n at four different a values for d = 1. The circles correspond to the three 
scenarios. (b) Power increases with d, making it easier to detect larger 
effects. The distributions show effect sizes d = 1, 1.5 and 2 for n = 3 and  
a = 0.05. Right, power as function of d at four different a values for n = 3.
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tion that is as far or farther away from m. In our example, this corre-
sponds to measuring an expression value further from the reference 
than x. This probability is the P value, which is the output of com-
mon statistical tests. It is calculated from the area under the distri-
bution curve in the shaded regions (Fig. 1c). In some situations we 
may care only if x is too big (or too small), in which case we would 
compute the area of only the dark (light) shaded region of Figure 1c.

Unfortunately, the P value is often misinterpreted as the prob-
ability that the null hypothesis (H0) is true. This mistake is called 
the ‘prosecutor’s fallacy’, which appeals to our intuition and was 
so coined because of its frequent use in courtroom arguments. In 
the process of calculating the P value, we assumed that H0 was true 
and that x was drawn from H0. Thus, a small P value (for example,  
P = 0.05) merely tells us that an improbable event has occurred in 
the context of this assumption. The degree of improbability is evi-
dence against H0 and supports the alternative hypothesis that the 
sample actually comes from a population whose mean is different 
than m. Statistical significance suggests but does not imply biological 
significance.

At this point you may ask how we arrive at our assumptions about 
the null distribution in Figure 1b. After all, in order to calculate P, 
we need to know its precise shape. Because experimentally deter-
mining it is not practical, we need to make an informed guess. For 
the purposes of this column, we will assume that it is normal. We 
will discuss robustness of tests to this assumption of normality in 
another column. To complete our model of H0, we still need to esti-
mate its spread. To do this we return to the concept of sampling.

To estimate the spread of H0, we repeat the measurement of our 
protein’s expression. For example, we might make four additional 
independent measurements to make up a sample with n = 5 (Fig. 2a).  
We use the mean of expression values (x̄ = 10.85) as a measure of 
our protein’s expression. Next, we make the key assumption that the 
s.d. of our sample (sx = 0.96) is a suitable estimate of the s.d. of the 
null distribution (Fig. 2b). In other words, regardless of whether the 
sample mean is representative of the null distribution, we assume that 
its spread is. This assumption of equal variances is common, and we 
will be returning to it in future columns.

From our discussion about sampling1, we know that given that 
H0 is normal, the sampling distribution of means will also be nor-
mal, and we can use sx/√n to estimate its s.d. (Fig. 2c). We localize 
the mean expression on this distribution to calculate the P value, 
analogously to what was done with the single value in Figure 1c. To 
avoid the nuisance of dealing with a sampling distribution of means 
for each combination of population parameters, we can transform 

Points of SIGNIFICANCE 

Significance, P values 
and t-tests
The P value reported by tests is a probabilistic 
significance, not a biological one.

Bench scientists often perform statistical tests to determine wheth-
er an observation is statistically significant. Many tests report the  
P value to measure the strength of the evidence that a result is not 
just a likely chance occurrence. To make informed judgments about 
the observations in a biological context, we must understand what 
the P value is telling us and how to interpret it. This month we will 
develop the concept of statistical significance and tests by introduc-
ing the one-sample t-test.

To help you understand how statistical testing works, consider the 
experimental scenario depicted in Figure 1 of measuring protein 
expression level in a cell line with a western blot. Suppose we mea-
sure an expression value of x = 12 and have good reason to believe 
(for example, from past measurements) that the reference level is  
m = 10 (Fig. 1a). What can we say about whether this difference is 
due to random chance? Statistical testing can answer this question. 
But first, we need to mathematically frame our intuitive understand-
ing of the biological and technical factors that disperse our measure-
ments across a range of values.

We begin with the assumption that the random fluctuations in the 
experiment can be characterized by a distribution (Fig. 1b). This 
distribution is called the null distribution, and it embodies the null 
hypothesis (H0) that our observation is a sample from the pool of 
all possible instances of measuring the reference. We can think of 
constructing this distribution by making a large number of indepen-
dent measurements of a protein whose mean expression is known 
to equal the reference value. This distribution represents the prob-
ability of observing a given expression level for a protein that is being 
expressed at the reference level. The mean of this distribution, m, is 
the reference expression, and its spread is determined by reproduc-
ibility factors inherent to our experiment. The purpose of a statistical 
test is to locate our observation on this distribution to identify the 
extent to which it is an outlier.

Statistics quantifies the outlier status of an observation by the 
probability of sampling another observation from the null distribu-

Figure 1 | The mechanism of statistical testing. (a–c) The significance 
of the difference between observed (x) and reference (m) values (a) is 
calculated by assuming that observations are sampled from a distribution 
H0 with mean m (b). The statistical significance of the observation x is the 
probability of sampling a value from the distribution that is at least as far 
from the reference, given by the shaded areas under the distribution  
curve (c). This is the P value.
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Figure 2 | Repeated independent observations are used to estimate the s.d. of 
the null distribution and derive a more robust P value. (a) A sample of n = 5  
observations is taken and characterized by the mean x-, with error bars 
showing s.d. (sx) and s.e.m. (sx/√n). (b) The null distribution is assumed to be 
normal, and its s.d. is estimated by sx. As in Figure 1b, the population mean 
is assumed to be m. (c) The average expression is located on the sampling 
distribution of sample means, whose spread is estimated by the s.e.m. and 
whose mean is also m. The P value of x- is the shaded area under this curve.
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When n is large, the required correction is smaller: the same  
t = 1.98 for n = 50 gives P = 0.054, which is now much closer to the 
value obtained from the normal distribution.

The relationship between t and P is shown in Figure 3b and can be 
used to express P as a function of the quantities on which t depends 
(D, sx, n). For example, if our sample in Figure 2b had a size of at 
least n = 8, the observed expression difference D = 0.85 would be 
significant at P < 0.05, assuming we still measured sx = 0.96 (t = 2.50,  
P = 0.041). A more general type of calculation can identify condi-
tions for which a test can reliably detect whether a sample comes 
from a distribution with a different mean. This speaks to the test’s 
power, which we will discuss in the next column.

Another way of thinking about reaching significance is to con-
sider what population means would yield P < 0.05. For our example, 
these would be m < 9.66 and m > 12.04 and define the range of stan-
dard expression values (9.66–12.04) that are compatible with our 
sample. In other words, if the null distribution had a mean within 
this interval, we would not be able to reject H0 at P = 0.05 on the 
basis of our sample. This is the 95% confidence interval introduced 
last month, given by m = x̄ ± t* × s.e.m. (a rearranged form of the 
one-sample t-test equation), where t* is the critical value of the t sta-
tistic for a given n and P. In our example, n = 5, P = 0.05 and t* = 2.78. 
We encourage readers to explore these concepts for themselves using 
the interactive graphs in Supplementary Table 1.

The one-sample t-test is used to determine whether our samples 
could come from a distribution with a given mean (for example, 
to compare the sample mean to a putative fixed value m) and for 
constructing confidence intervals for the mean. It appears in many 
contexts, such as measuring protein expression, the quantity of drug 
delivered by a medication or the weight of cereal in your cereal box. 
The concepts underlying this test are an important foundation for 
future columns in which we will discuss the comparisons across 
samples that are ubiquitous in the scientific literature.
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2698).
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the mean x̄ to a value determined by the difference of the sample 
and population means D = x̄ – m divided by the s.e.m. (sx/√n). This 
is called the test statistic.

It turns out, however, that the shape of this sampling distribution 
is close to, but not exactly, normal. The extent to which it departs 
from normal is known and given by the Student’s t distribution 
(Fig. 3a), first described by William Gosset, who published under 
the pseudonym ‘Student’ (to avoid difficulties with his employer, 
Guinness) in his work on optimizing barley yields. The test statistic 
described above is compared to this distribution and is thus called 
the t statistic. The test illustrated in Figure 2 is called the one-sample 
t-test.

This departure in distribution shape is due to the fact that for most 
samples, the sample variance, sx

2, is an underestimate of the vari-
ance of the null distribution. The distribution of sample variances 
turns out to be skewed. The asymmetry is more evident for small n, 
where it is more likely that we observe a variance smaller than that 
of the population. The t distribution accounts for this underestima-
tion by having higher tails than the normal distribution (Fig. 3a). As  
n grows, the t distribution looks very much like the normal, reflect-
ing that the sample’s variance becomes a more accurate estimate.

As a result, if we do not correct for this—if we use the normal 
distribution in the calculation depicted in Figure 2c—we will be 
using a distribution that is too narrow and will overestimate the 
significance of our finding. For example, using the n = 5 sam-
ple in Figure 2b for which t = 1.98, the t distribution gives us  
P = 0.119. Without the correction built into this distribution, we would  
underestimate P using the normal distribution as P = 0.048 (Fig. 3b).  

Figure 3 | The t and normal distributions. (a) The t distribution has 
higher tails that take into account that most samples will underestimate 
the variability in a population. The distribution is used to evaluate 
the significance of a t statistic derived from a sample of size n and is 
characterized by the degrees of freedom, d.f. = n – 1. (b) When n is small, P 
values derived from the t distribution vary greatly as n changes.
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Points of Significance

Error bars
The meaning of error bars is often misinterpreted, 
as is the statistical significance of their overlap.

Last month in Points of Significance, we showed how samples are 
used to estimate population statistics. We emphasized that, because 
of chance, our estimates had an uncertainty. This month we focus on 
how uncertainty is represented in scientific publications and reveal 
several ways in which it is frequently misinterpreted.

The uncertainty in estimates is customarily represented using 
error bars. Although most researchers have seen and used error 
bars, misconceptions persist about how error bars relate to statisti-
cal significance. When asked to estimate the required separation 
between two points with error bars for a difference at significance  
P = 0.05, only 22% of respondents were within a factor of 2 (ref. 1). 
In light of the fact that error bars are meant to help us assess the 
significance of the difference between two values, this observation 
is disheartening and worrisome.

Here we illustrate error bar differences with examples based on a 
simplified situation in which the values are means of independent 
(unrelated) samples of the same size and drawn from normal popula-
tions with the same spread. We calculate the significance of the differ-
ence in the sample means using the two-sample t-test and report it as 
the familiar P value. Although reporting the exact P value is preferred, 
conventionally, significance is often assessed at a P = 0.05 threshold. 
We will discuss P values and the t-test in more detail in a subsequent 
column.

The importance of distinguishing the error bar type is illustrat-
ed in Figure 1, in which the three common types of error bars— 
standard deviation (s.d.), standard error of the mean (s.e.m.) and con-
fidence interval (CI)—show the spread in values of two samples of size 
n = 10 together with the P value of the difference in sample means. In  
Figure 1a, we simulated the samples so that each error bar type has the 
same length, chosen to make them exactly abut. Although these three 
data pairs and their error bars are visually identical, each represents a 
different data scenario with a different P value. In Figure 1b, we fixed 
the P value to P = 0.05 and show the length of each type of bar for this 
level of significance. In this latter scenario, each of the three pairs of 
points represents the same pair of samples, but the bars have differ-
ent lengths because they indicate different statistical properties of the 
same data. And because each bar is a different length, you are likely 
to interpret each one quite differently. In general, a gap between bars 

does not ensure significance, nor does overlap rule it out—it depends 
on the type of bar. Chances are you were surprised to learn this unin-
tuitive result.

The first step in avoiding misinterpretation is to be clear about 
which measure of uncertainty is being represented by the error bar. 
In 2012, error bars appeared in Nature Methods in about two-thirds 
of the figure panels in which they could be expected (scatter and bar 
plots). The type of error bars was nearly evenly split between s.d. and 
s.e.m. bars (45% versus 49%, respectively). In 5% of cases the error 
bar type was not specified in the legend. Only one figure2 used bars 
based on the 95% CI. CIs are a more intuitive measure of uncertainty 
and are popular in the medical literature.

Error bars based on s.d. inform us about the spread of the popula-
tion and are therefore useful as predictors of the range of new sam-
ples. They can also be used to draw attention to very large or small 
population spreads. Because s.d. bars only indirectly support visual 
assessment of differences in values, if you use them, be ready to help 
your reader understand that the s.d. bars reflect the variation of the 
data and not the error in your measurement. What should a read-
er conclude from the very large and overlapping s.d. error bars for  
P = 0.05 in Figure 1b? That although the means differ, and this can 
be detected with a sufficiently large sample size, there is considerable 
overlap in the data from the two populations.

Unlike s.d. bars, error bars based on the s.e.m. reflect the uncer-
tainty in the mean and its dependency on the sample size, n (s.e.m. 
= s.d./√n). Intuitively, s.e.m. bars shrink as we perform more mea-
surements. Unfortunately, the commonly held view that “if the 
s.e.m. bars do not overlap, the difference between the values is sta-
tistically significant” is incorrect. For example, when n = 10 and 
s.e.m. bars just touch, P = 0.17 (Fig. 1a). Conversely, to reach P = 
0.05, s.e.m. bars for these data need to be about 0.86 arm lengths 
apart (Fig. 1b). We cannot overstate the importance of recognizing 
the difference between s.d. and s.e.m.

The third type of error bar you are likely to encounter is that based 
on the CI. This is an interval estimate that indicates the reliability of a 
measurement3. When scaled to a specific confidence level (CI%)—the 
95% CI being common—the bar captures the population mean CI% 
of the time (Fig. 2a). The size of the s.e.m. is compared to the 95% CI 
in Figure 2b. The two are related by the t-statistic, and in large samples 
the s.e.m. bar can be interpreted as a CI with a confidence level of 
67%. The size of the CI depends on n; two useful approximations for 
the CI are 95% CI ≈ 4 × s.e.m (n = 3) and 95% CI ≈ 2 × s.e.m. (n > 15).  
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Sample mean Sample mean
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Figure 1 | Error bar width and interpretation of spacing depends on the error 
bar type. (a,b) Example graphs are based on sample means of 0 and 1  
(n = 10). (a) When bars are scaled to the same size and abut, P values span 
a wide range. When s.e.m. bars touch, P is large (P = 0.17). (b) Bar size and 
relative position vary greatly at the conventional P value significance cutoff 
of 0.05, at which bars may overlap or have a gap.

Figure 2 | The size and position of confidence intervals depend on the 
sample. On average, CI% of intervals are expected to span the mean—about 
19 in 20 times for 95% CI. (a) Means and 95% CIs of 20 samples (n = 10) 
drawn from a normal population with mean m and s.d. σ. By chance, two of 
the intervals (red) do not capture the mean. (b) Relationship between s.e.m. 
and 95% CI error bars with increasing n.
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A common misconception about CIs is an expectation that a CI 
captures the mean of a second sample drawn from the same popu-
lation with a CI% chance. Because CI position and size vary with 
each sample, this chance is actually lower.

This variety in bars can be overwhelming, and visually relating 
their relative position to a measure of significance is challenging. 
We provide a reference of error bar spacing for common P values in  
Figure 3. Notice that P = 0.05 is not reached until s.e.m. bars are sepa-
rated by about 1 s.e.m, whereas 95% CI bars are more generous and 
can overlap by as much as 50% and still indicate a significant differ-
ence. If 95% CI bars just touch, the result is highly significant (P = 
0.005). All the figures can be reproduced using the spreadsheet avail-
able in Supplementary Table 1, with which you can explore the rela-
tionship between error bar size, gap and P value.

Be wary of error bars for small sample sizes—they are not robust, 
as illustrated by the sharp decrease in size of CI bars in that regime 
(Fig. 2b). In these cases (e.g., n = 3), it is better to show individual 
data values. Furthermore, when dealing with samples that are related 
(e.g., paired, such as before and after treatment), other types of error 
bars are needed, which we will discuss in a future column.

It would seem, therefore, that none of the error bar types is intui-
tive. An alternative is to select a value of CI% for which the bars 
touch at a desired P value (e.g., 83% CI bars touch at P = 0.05). 
Unfortunately, owing to the weight of existing convention, all three 
types of bars will continue to be used. With our tips, we hope you’ll 
be more confident in interpreting them. 
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2659).
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Figure 3 | Size and position of s.e.m. and 95% CI error bars for common  
P values. Examples are based on sample means of 0 and 1 (n = 10).
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