Wynn Legon, PhD Neuromodulation Lab

Wynn Legon, PhD


York University, MSc, Kinesiology

University of Waterloo, PhD, Kinesiology and Cognitive and Behavioral Neuroscience

Research Areas

Non-invasive neuromodulation, focused ultrasound, EEG, EMG, TMS, MRI, human behavior, empirical acoustic testing and computer modelling

More information at: http://www.neuromodlab.net

Summary of Research

My research is focused on exploring how ultrasound can be used as a non-invasive method to modulate cortical and sub-cortical excitability in the human brain. We employ various methods to non-invasively monitor brain activity in response to ultrasound including EEG, EMG, fMRI and TMS. In addition, we also test the effect of ultrasound to cortical and sub-cortical areas on behavior. The lab also fabricates transducers and conducts empirical acoustic testing and computer modelling of acoustic wave propagation to better understand the energy and location of ultrasound effects. We look to adapt and optimize focused ultrasound for non-invasive human brain mapping with eventual translation to clinical populations for both diagnostic and therapeutic applications.

The lab also conducts basic ultrasound neuromodulation research in small and large animal preparations exploring optimal parameters and safety for efficacious modulation.

Google Scholar





434 924 1154

Recent Publications

  1. Ai L. Bansal P. Mueller JK. Legon W. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI. Bioarxiv. doi: https://doi.or/10.1101/277608
  2. Legon W. Bansal P. Tyshynsky R. Ai L. Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. (2018). Bioarxiv. doi: https://doi.org/10.1101/234666
  3. Legon W. Ai L. Bansal P. Mueller J.K. (2018). Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018; 00:1-12. https://doi.org/10.1002/hbm.23981.
  4. Guo H. Hamilton M. Offutt S. Gloeckner C. Li T. Kim Y. Legon W. Alford J.K. Lim H.H. (2018). Ultrasound produces extensive brain activation via a cochlear pathway. Bioarxiv. doi: https://doi.org/10.1101/233189.
  5. Mueller J.K. Ai L. Bansal P. Legon W. (2017). Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J. Neural Eng. 14 066012.
  6. Mueller J.K. Ai L. Bansal P. Legon W. (2016). Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation. J. Neural Eng. 13 056002.
  7. Ai L. Mueller J. Grant A. Eryaman A. Legon W. (2016). Transcranial Focused Ultrasound for BOLD fMRI Signal Modulation in Humans. EMBC 2016; 1758-1761. doi: 10.1109/embc.2016.7591057.
  8. Legon W. Punzell S. Dowlati E. Adams SE. Stiles AB. Moran RJ. (2015). Altered prefrontal excitation/inhibition balance and prefrontal output: Markers of aging in human memory networks. Cer. Cortex. doi: 10.1093/cercor/bhv200.
  9. Neren D. Johnson MD. Legon W. Bachour SP. Ling G. Divani AA. (2015). Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. doi: 10.1007/s12028-015-0203-0
  10. Mueller J. Legon W. Tyler W.J. (2015). Analysis of transcranial focused ultrasound beam profile sensitivity for neuromodulation of the human brain. arXiv: 1503.02019.
  11. Opitz A. Legon W. Mueller J. Barbour A. Paulus W. Tyler W.J. (2015). Is sham cTBS real cTBS? The effect on EEG dynamics. Hum.Neurosci. 08 Jan 2015. http://dx.doi.org/10.3389/fnhum.2014.01043
  12. Mueller J. Legon W. Opitz A. Sato T.F. Tyler W.J. (2014). Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 7,(6):900-8. doi: 10.1016/j.brs.2014.08.008
  13. Legon W. Sato T.F. Opitz A.  Mueller J.  Barbour A. Williams A.  Tyler W.J.  (2014). Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature Neuroscience. 17, 322-329. doi:10.1038/nn.3620
  14. Legon W. Dionne J.K. and Staines W.R. (2013). Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory & motor evoked potentials. Brain Stimul, Nov; 6 (6): 877-83. doi: 10.1016/j.brs.2013.04.007
  15. Opitz A. Legon W. Rowlands  Paulus W. Bickel W. and Tyler W.J. (2013). Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. NeuroImage, Nov 1; 81: 253-64. doi: 10.1016/j.neuroimage.2013.04.067
  16. Dionne J.K. Legon W. & Staines W.R. (2013). Cross-modal influences on early somatosensory processing: interaction of vision, touch and task-relevance. Exp Brain Res, May; 226(4): 503-12.
  17. Legon W. Rowlands    Opitz  A.  Sato T.  Tyler W.J. (2012). Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and fMRI. PLoS One.  2012;7(12): e51177.  doi: 10.1371/journal.pone.0051177