Developing New Strategies for Musculoskeletal Tissue Repair and Regeneration using Biomedical Engineering Approaches

Silvia Salinas Blemker and Shayn Peirce-Cottler

Biomedical Engineering,
University of Virginia

A current project example: muscle-tendon remodeling following tendon transfer surgery

Goal: develop a modeling framework that can predict how muscle adapts to surgery.

Currently funded by the National Science Foundation

We are creating a multi-scale computer <u>model</u> of muscle remodeling following surgery

The multi-scale computer models reveal the relationship between molecular & cell biology, composition, form, and function.

Why model???

1. Computer models can <u>point you to what is most important</u>.

1. Computer models can <u>point you to what is most important</u>.

"How does surgical tensioning influence post-operative function"

1. Computer models can <u>point you to what is most important</u>.

"Which molecule is the best target for minimizing scar following surgery?"

2. Computer models can <u>run in silico</u> experiments so that you can run fewer real (expensive and time-consuming) experiments

"Which combinations of cells & scaffolds should be included in a tissue engineered implant provide the most functional improvement?"

2. Computer models can <u>run in silico</u> experiments so that you can run fewer real (expensive and time-consuming) experiments

"Which combinations of cells & scaffolds should be included in a tissue engineered implant provide the most functional improvement?"

molecular & composition cell biology

3 scaffold types

3 cell conditions

6 animals per treatment group

4 time points per treatment group

2 muscle beds

432 rats = 1 year of a technician's time

= 1 day on the computer

Agent-based computational model simulates cells and proteins in muscle to predict degeneration and regeneration

Agent-based computational model simulates cells and proteins in muscle...

and how they change over time (i.e. growth, repair, remodeling)...

in response to disuse, surgery, exercise, therapy...

Models are integrated with novel imaging and 3D printing technologies

The "Zebra-scope"... a wearable microscope with a multi-functional microendoscope probe for minimally invasive observation of tissues

Real-time imaging of muscle tissue in "alert" subjects

Laser-scanning second-harmonic generation (SHG) imaging

First-ever serial measurements of sarcomere lengths

Image-based reconstructions of muscle allow us to quantify muscle volume in vivo

extreme hypertrophy (z > 4)
hypertrophy (2.5<z<4)
slight hypertrophy (1<z<2.5)
normal (-1<z<1)
slight atrophy (-2.5<z<-1)
atrophy (-4<z<-2.5)
extreme atrophy (z<-4)

imaging of tendon

posterior view

Dynamic MRI

Real-time MRI

Fiorentino et al, J. Biomechanical Engineering, 2014

Cine DENSE MRI

Fiorentino et al, J. Biomechanics, 2012

High-resolution imaging of microvessel function, structure, & composition

3D-Bioprinting in Peirce-Cottler Lab

