

ORTHOPAEDIC SURGERY

New World Biology of Flexor Tendon Repairs Tendon Tissue Engineering

Bobby Chhabra, MD Lillian T. Pratt Distinguished Professor Chair, Department of Orthopaedic Surgery University of Virginia Health System

Disclosures

- Speaker, Miller Orthopaedic Review Course
- Royalties, W. B. Saunders & Elsevier Publishing
- Hand Fellowship Support, Depuy/Synthes Inc.

No conflicts with this presentation

Tendon Healing

- Tendon repair outcomes are variable
 - Re-rupture
 - Restrictive adhesions and scar
 - Thinner collagen fibril bundles
 - Reduced mechanical properties (Morberg, et al. Scand J Med Sci Sports 1997) (Lilly, et al. JAAOS 2006)

Repair Phase	Activity	Growth Factor
Inflammatory	Stimulates the recruitment of fibroblasts and inflammatory cells to the injury site	IGF-I
	Regulation of cell migration	TGF-β
	Expression of other growth factors (e.g. IGF-1)	PDGF
	Induction of angiogenesis	VEGF, bFGF
Proliferative	Cellular proliferation (DNA synthesis)	IGF-I & PDGF, TGF-β, bFGF, GDF-5, -6, & -7
	Stimulates synthesis of collagen and ECM components	IGF-I & PDGF, bFGF
	Stimulates cell-matrix interactions	TGF-β, bFGF
	Collagen Type III synthesis	TGF-β, GDF-5, -6, & -7
Remodeling	ECM remodeling	IGF-I
	Termination of cell proliferation	TGF-β
	Collagen Type I synthesis	TGF-β, GDF-5, -6, & -7

Normal Tendon Healing

Haphazard w/ "scar" formation Always inferior to pre-injured tendon

Comparison of Normal and Repaired Tendon

Butler et al., Ann Rev Biomed Eng., 2004; 6: 303

How Can We Improve Tendon Repair & Regeneration?

Driving force: Inability of natural healing and current surgical techniques to truly regenerate native tendon

Tissue Engineering Solutions for Tendon Repair

Journal of the American Academy of Orthopaedic Surgeons

Review Article

Tissue Engineering Solutions for Tendon Repair

MaCalus V. Hogan, MD Namory Bagayoko, MD Roshan James, MS Trevor Starnes, MD, PhD Adam Katz, MD A. Bobby Chhabra, MD

Abstract

Tendon injuries range from acute traumatic ruptures and lacerations to chronic overuse injuries, such as tendinosis. Even with improved nonsurgical, surgical, and rehabilitation techniques, outcomes following tendon repair are inconsistent. Primary repair remains the standard of care. However, repaired tendon tissue rarely achieves functionality equal to that of the preinjured state. Poor results have been linked to alterations in cellular organization

JAAOS 2011

REVIEW ARTICLE

Tendon: Biology, Biomechanics, Repair, Growth Factors, and Evolving Treatment Options

JHS

2008

Roshan James, MS, Girish Kesturu, PhD, Gary Balian, PhD, A. Bobby Chhabra, MD

Time after injury

102-12

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE **RESEARCH ARTICLE** J Tissue Eng Regen Med 2011; 5: 191–200. Published online 23 July 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/term.304

Growth differentiation factor-5 regulation of extracellular matrix gene expression in murine tendon fibroblasts[†]

Macalus Hogan^{1#}, Kesturu Girish^{1,2#}, Roshan James^{1,3}, Gary Balian^{1,4}, Shepard Hurwitz⁵ and A. B. Chhabra^{1,6}*

GDF-5 up-regulated relevant tendon healing genes early in the repair process (scleraxis, tenomodulin, Collagen type 1) – <u>CAN THIS ACCELERATE HEALING?</u>

GDF-5 down-regulated pro-inflammatory genes – <u>CAN</u> <u>THIS DECREASE ADHESIONS ?</u>

> Hogan, Chhabra et al. JTERM 2011

Control group

rGDF-5 treated group

Hogan, Chhabra et al. JTERM 2011

Tissue Engineering Solutions for Tendon Repair

Stem Cells and Tissue Engineering Hope or Hype?

BMT

Apligraf[™]-skin

Apligraf

Human skin

Carticel ™

TISSUE ENGINEERING: Part A Volume 16, Number 9, 2010 © Mary Ann Liebert, Inc. DOI: 10.1089/ten.tea.2009.0710

Adipose-Derived Mesenchymal Stem Cells Treated with Growth Differentiation Factor-5 Express Tendon-Specific Markers

Andrew Park, M.D.,^{1,*} MaCalus V. Hogan, M.D.,^{1,*} Girish S. Kesturu, Ph.D.,^{2,*} Roshan James, M.S.,¹ Gary Balian, Ph.D.,¹ and Abhinav Bobby Chhabra, M.D.¹

Goal: Investigate the effects of GDF-5 on proliferation and tendinogenic gene expression of rat aMSCs.

> Park, Chhabra et al. Tiss Eng 2010

aMSCs + GDF-5 Concentration Kinetics

Tenocyte Markers

ECM & CAR

(p<0.05)

Tubular Electrospun Scaffold

Setup for Fabrication of Tubular Scaffolds

Functionally Active Scaffolds

Rat Tendon Defect Model

- Female Fischer 344 rat (8 week old)
 - 8 mm Tubular Scaffold
 - Immobilization for 10 14 days

Increased Scx and Tnmd Expression

Improved Orientation

Increased Strength of Repair

Scaffold In Vitro – 16 – 22 N

Increased Tensile Strength

Native Rat Tendon – 30 – 70 N

P < 0.05

Next Step: Drug-Scaffold GDF-5 Protein Release

GDF-5 covalently bonded to scaffold
@ 2 weeks ~8ng/mL of GDF-5 is released
Burst release profile is seen in the first 4 days.

Where We're Going

MSC + PLAGA + GDF-5 construct optimization and *in vivo* application

Manipulation of scaffold to minimize adhesions

- Mechanical stress of scaffold/cell/growth factor construct to enhance healing and improve biomechanical strength
- Translation to larger animal model

Further study is needed to determine the ideal tissue engineered construct for tendon regeneration

Acknowledgements

UVA Orthopaedic Laboratories UVA Department of Orthopaedic Surgery NIAMS NIH-NIAMS ■ NSF

Orthopaedic Research & Education Foundation