

Novel Device for Suture Anchor Augmentation for Tendon Repair

Joseph S. Park, M.D. Silvia Blemker, PhD

Clinical Problem: Fixation of FDL Tendon to Navicular

Consequence of shifting the effective insertion is loss of moment arm

Research Aims

- Aim 1 is to test strength of compression with:
 - Suture anchor alone
 - Suture anchor plus suture button prototype
 - Suture anchor plus porous metal spiked button prototype
 In rabbit achilles tendons and bone substitute
- Aim 2 is to characterize the biologic healing of the tendon-bone interface in surgically-repaired rabbit Achilles tendons
 - 2a: characterize with H&E staining (1/2 animals)
 - 2b: characterize healing tendon with MRI
 - 2c: perform biomechanical testing of healed tendon

Funding

 Study Funded by the Wallace H. Coulter Foundation Translational Research Award (\$100,000)

http://whcf.org/the-wallace-h-coulter-foundation/#

Problem: Imperfect Tendon Repair

Goal Show that the suture button is an improvement to the suture anchor technique

Methods

3. Tensile Load-to-Failure

Suture knot Tendon Bone Suture anchor

Contact Area

- Use Fuji Pressure Film to characterize compressive force applied.
- Button → 3.8 x increase area of compression (P < 0.002).

Comparison of Contact Area

Trial Number

Cyclical Loading

 New Zealand White rabbit achilles tendons were attached to bone block substitute (Sawbones.com) via Biomet

Juggerknot anchors

25 N of force were applied for 50 cycles (0.5 Hz)

Control: 2.24 mm liftoff

Device: 0.19 mm liftoff (0.99 mm at 500 cycles)

/O F II-\	Measurement of Liftoff After 50 Cycles		
(0.5 Hz)		Distance From Underside of Tendon to Bone Block, mm	
cycles)	Device condition specimens		
	1	2.11	
	2	2.31	
	3	2.31	
	Average	2.24	
	SD	0.12	
	Control condition specimens		
	1	0.20	
	2	0.10	
	3	0.27	
	Average	0.19	
Orthopaedic Su	SD	0.09	

TABLE 2

Load to Failure

Control

Device

Tensile Failure Testing

- Pull to failure tests
- Looked at <u>yield load</u> and <u>ultimate load</u>
 - Yield load: begins to tear
 - Ultimate load: complete failure

Yield Load

Yield Load

Yield Load

TABLE 3				
Results of Load-to-Failure Tensile Test				
	Yield Load, N	Ultimate Load, N		
Device condition specimens				
1	73.2	73.2		
2	100.7	104.1		
3	76.8	76.8		
4	97.3	124.9		
Average	87.0	94.7		
SD	14.0	24.3		
Control condition specimens				
1	53.9	72.2		
2	51.2	56.5		
3	55.6	62.7		
4	41.5	89.7		
Average	50.6	70.3		
SD	6.30	14.5		

72% increase in Yield Load with Device Condition

Intellectual Property

- Provisional Patent Filed 9/23/14
- Pursuing partnership for manufacturing of surgical grade buttons (titanium/PEEK).
- Consideration for materials: titanium may allow for thinner implant for both cleated and spiked versions. (10x stronger versus flexion and 6x stronger versus compression)
- Button Optimization: due to fracture of button during initial Instron trials, made holes smaller, centered to increase strength of implant. 3D printed buttons made of Acrylonite Butadiene Styrene (ABS)

Intellectual Property-Future Directions

- ACUC Animal Protocol approved for rabbit in-vivo study
- IRB being written for MRI study for human subjects s/p tendon reattachment with/with-out suture button (Blemker/ Nacey/Miller)

Research Team

- Silvia Blemker PhD-Biomedical Engineering
- Capstone BME Team: Lauren Baetsen, Cate Ma McNulty, Audra Sawyer
- Chris Li, PhD-Mechanical Engineering
- Future Studies-
 - Master's Student?
 - Hilary Bart-Smith PhD?
 - Stephen Brockmeier MD?
 - Aim 2: In Vivo Rabbit Achilles Study
 - MRI evaluation
 - Histology
 - Mechanical Testing

Capstone Team

Thank You! jsp3x@virginia.edu

