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A wide variety of rhythmic electrophysiological phenomena—including driven, induced,
and endogenous activities of cortical neuronal masses—lend themselves naturally to analysis
using frequency-domain techniques applied to multichannel recordings that discretely sample
the overall spatial pattern of the rhythmic activity. For such cases, a large but so far poorly
utilized body of statistical theory supports a third major approach to topographic analysis,
complementing the more familiar mapping and source-recovery techniques. These methods,
many of which have only recently become computationally feasible, collectively provide
general solutions to the problem of detecting and characterizing systematic differences that
arise—not only in the spatial distribution of the activity, but also in its frequency-dependent
between-channel covariance structure—as a function of multiple experimental conditions
presented in conformity with any of the conventional experimental designs. This application-
oriented tutorial review provides a comprehensive outline of these resources, including: (1)
real multivariate analysis of single-channel spectral measures (and measures of between-
channel relationships such as coherence and phase), (2) complex multivariate analysis based on
multichannel Fourier transforms, and (3) complex multivariate analysis based on multichannel
parametric models. Special emphasis is placed on the potential of the multichannel autoregres-
sive model to support EEG (and MEG) studies of perceptual and cognitive processes.  1997

Academic Press

Recent advances in data-collection hardware, together with commensurate
advances in methods of data analysis and display, are driving the emergence of
high-resolution EEG as an important human functional imaging modality (1–5).
To date, the improved sampling of the scalp field afforded by modern hardware
has been exploited principally in terms of enhancements in the two most com-
monly applied forms of spatial analysis—namely, topographic mapping and
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source recovery, supported by whatever statistical methods are applied to the
outcomes of these operations. In this paper, however, we outline a third major
approach to the same class of problems, one based on a large body of existing
theory which although highly developed mathematically and statistically has not
until recently been computationally practical and is not yet generally as well
known to the EEG/MEG research community.

The approach is specifically appropriate to situations in which the activities
of interest are naturally measured in the frequency domain. For example, the
research situation we usually have implicitly in mind involves the analysis of
‘‘driving’’ or frequency-following responses (FFRs) extracted from multichannel
scalp EEG recordings obtained in conjunction with exposures to punctate vibro-
tactile stimuli (6, 7). The basic concepts apply equally well, however, to other
kinds of electrophysiological data such as multiple spike trains and multichannel
recordings from the cortical slice, as well as to a host of other neuropsychological
studies of EEG (and MEG) topography. Recent work on induced ‘‘40 Hz’’ or
gamma-band rhythms, for example, strongly suggests not only that these oscilla-
tory phenomena are engendered in specific cortical regions initially engaged by
a task, but also that by virtue of their phase-locked relationship to the spiking
behavior of the underlying neuronal population they essentially transcribe them-
selves into cortical regions with which the zones of origin are functionally con-
nected in the performance of that task (see for example (8–13), and note that
this argument remains valid even if the oscillatory events are only a sign of the
underlying coding activity rather than actually constituting it). Thus in a more
general setting the measured quantities might reflect ‘‘40 Hz’’ responses, activity
in one or more of the traditional broad frequency bands (e.g., theta, alpha), etc.

The central questions to be addressed by our analyses of experimental data
are then whether—and if so, how—these multichannel batteries of frequency-
domain measures change systematically across the conditions of the experiment.
Although experimenters are generally accustomed to thinking about such differ-
ences primarily in terms of differences between means, fundamental biophysical
and neurophysiological considerations clearly indicate that the between-channel
covariance structure of the measures is also likely to undergo systematic changes
across experimental conditions, or as a function of time. For example, during
adaptation to a prolonged vibratory stimulus, any or all of the following changes
may occur in the scalp-recorded image of the activity of the responding cortical
neuronal population in areas 3b and 1, as it is progressively reshaped by perico-
lumnar opponent mechanisms involving a cascade of well-characterized cellular
and molecular mechanisms (6, 14–16): (1) loss of overall response amplitude,
causing low-amplitude regions of the initial response pattern to disappear into
the noise background; (2) an apparent shift of mean response location, due to
differential modification of neuronal responsiveness over large spatial gradients;
and (3) fractionation of the remaining cortical response into multiple, spatially
segregated regions of more focal and coherent activity. All of these effects could
clearly produce changes in both the mean vectors and covariance structures
observed at an overlying array of recording electrodes, the exact mix of effects
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depending not only on the neurophysiological changes themselves but also on
the geometry of the recording array (17). In a more general neuropsychological
setting the importance of covariance information again also follows directly from
current ‘‘distributed’’ models of cognition, which presume that each elementary
unit of cortical information processing involves coordination of large and spatially
segregated neuronal ensembles, which can be recruited selectively in varying
patterns as required by the tasks at hand (18–20).

The methods that we will now describe seek to make full use of the information
available in the multivariate data structure, extracting quantitative information
about both central tendency and covariance properties in relation to the experi-
mental conditions. The subjects to be covered lie at the intersection of two large
and difficult technical disciplines—multiple time series analysis and multivariate
statistics—to which we can provide here only the barest introduction. (To ap-
preciate the complexities in full, see for example (21, 22). Our intent is not to
be mathematically complete or rigorous but rather to supply applied research
workers with a tutorial overview showing how these disciplines jointly provide
a comprehensive collection of practical methods for frequency-domain statistical
analysis of topographic structure in multichannel electrophysiological data. To
this end, we will present just enough of the mathematical basis to provide insight
into the nature of the measures and procedures discussed (together with pointers
to the supporting mathematical detail) while emphasizing application-oriented
issues and identifying sources of software to perform the relevant calculations.
Our goal is to promote this complementary approach to the analysis of functional
brain topography, which we believe is poised to become increasingly effective
and important given the recent advent of adequate computing resources to
support its informed application (mirroring the infusion of multivariate statistical
methods into many areas of behavioral research that began in the sixties).

We begin by characterizing more concretely the nature of the data. The entity
to be analyzed is an experiment, carried out on a single subject,1 and organized
as a sequence of trials. We assume that editing for artifact has already taken
place (Section 5.2). Each surviving trial involves the sampling of p scalp locations
or channels at m equidistant time points, resulting in an m 3 p matrix of raw
data values. Furthermore, each trial will be associated with one of l experimental
levels, or groups, or conditions (for example, vibrotactile stimulus amplitudes,
or different stages of adaptation). In principle the experimental conditions might
also be cross-classified and/or nested in various ways—i.e., might represent any
standard experimental design.

An extremely important and advantageous feature is the availability of re-

1 The initial restriction to within-subject designs is a considerable departure from the mainstream
tradition in EEG research, but (a) this is appropriate, given the strong dependence of scalp EEG
patterns on extraneous factors such as skull thickness, cortical folding, etc.; and (b) it involves no
loss of generality, as indicated below, since the framework extends readily to between-subject designs.
Parenthetically, claims of higher spatial resolution in the early MEG studies—to which most of the
material presented in this paper applies equally well—are almost completely confounded experimen-
tally with their more routine use of within-subject designs.
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peated observations of the signal expressed in the multiple time series under
each of the experimental conditions. In contrast with the situation that dominates
most classical discussions of statistical estimation for time series (especially in
engineering contexts), in which the analyst has only one realization of the underly-
ing process available for study and the construction of tests and confidence
regions depends heavily on stringent assumptions about the properties of that
process, we will normally be able to construct estimates of variation and covaria-
tion derived from the data itself, and to use these for statistical tests of group
differences.2

The remainder of this paper consists of a guided tour of Fig. 1, which summa-
rizes the entire collection of methods and their interrelationships. We start at
the left with the raw data matrix for a single trial as described above, adding
only a notation to the effect that the data matrix may already have been subjected
to temporal and/or spatial filtering operations designed to reduce or eliminate
competing structure in the raw signal (e.g., background EEG rhythms, line-
noise components). From this point the analysis can proceed along three main
trajectories, not mutually exclusive, corresponding to (1) real multivariate analy-
sis of vectors of single-channel spectral measures (top section of Fig. 1); (2)
complex multivariate analysis based on multichannel Fourier transforms (bottom
section); and (3) complex multivariate analysis based on multichannel parametric
models (middle section). The sections of Fig. 1 will be covered in this order,
together with explanations of their various interconnections.

1. REAL MULTIVARIATE ANALYSIS

This section is for the most part already fairly well represented in the existing
EEG literature. Transformation of the raw time data to the frequency domain is
first carried out channel by channel, using either nonparametric Fourier transform
(FT) or parametric (AR/ARMA) methods. Without going into details which
would carry us beyond the scope of this paper, we briefly highlight and contrast
some key statistical properties of these very different approaches to spectral
analysis.

1.1. FT-Based Spectral Estimation

The dominant FT-based approach capitalizes upon the computational effi-
ciency of fast Fourier transform (FFT) algorithms. Its theory and practice have
been thoroughly characterized both in general and in the specific context of
EEG analysis (e.g., 23–29). There are two issues in particular, however, that
researchers who wish to apply this very useful tool must bear in mind. First,
because the calculated spectrum of the sampled signal involves a convolution of
the spectrum of the signal itself with the spectrum of the sampling window

2 The relatively high ratio of replications to observation points (channels) is also a major advantage
of EEG studies with respect to other functional imaging technologies such as 2DG, PET, SPECT,
and fMRI in terms of providing access to statistical means for assessment of topographic structure.
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applied to the time data, the window controls ‘‘leakage’’ of EEG power from
large peaks into sideband frequencies. A raw EEG time record has in effect
been multiplied by a rectangular window of length T sec (the ‘‘boxcar’’ window),
which provides maximum frequency resolution (1/T Hz) at the cost of poor
sidelobe behavior ((sin x)/x ripple). The various alternative windowing schemes
reduce the leakage (at the cost of discarding data and compromising frequency
resolution and in dependence) by smoothly tapering both ends of the raw data
record to zero, as discussed in the references cited (see also 30, which systemati-
cally compares the performance of a large number of windows; incidentally, the
cosine bell tapers generally used in EEG studies to date fare poorly in these
comparisons).

The second issue is more fundamental to the statistical concerns of this paper.
The FT is a linear transformation, not a statistical model, of the time record. It
amounts to an axis rotation, or equivalently to a projection of the m-point data
vector onto an orthonormal basis composed of the cosine and sine functions at
m/2 equally-spaced Fourier frequencies (see, e.g., 27, 31, 32). Thus there are as
many parameters as data points—i.e., no data compression occurs—and in fact
an inverse FT of the complex output exactly reproduces the original time record.
The raw spectral estimate or ‘‘periodogram’’ is formed from the complex FT
output by conjugation, i.e., by squaring and summing the cosine (real) and sine
(imaginary) terms at each frequency. On the assumption that the original time
series was zero-mean, Gaussian, and stationary, the linearity of the Fourier
transform implies that these estimates are independent and follow a sampling
distribution proportional to chi-square with 2 degrees of freedom (df)—i.e.,
an exponential distribution (these results continue to hold approximately for
moderately non-Gaussian and nonstationary data). Since a chi-square with k df
has mean k and variance 2k, the standard deviation of the estimate equals its
mean. Extending the time record only generates additional periodogram ordi-
nates and does not change their sampling properties. The estimates can only be
improved by ‘‘smoothing,’’ which involves averaging the raw periodogram values
over frequencies, or over records, or both, each step of the averaging adding
another chi-square term with approximately 2 df to the final estimate, depending
on the windowing. Chi-square coverges to the normal with increasing df, and
the estimates converge toward the true value of the spectrum at each frequency.
These improvements are significantly enhanced by applying a log transform,
which greatly reduces the right-hand skew of low-df chi-square distributions (33).

The choice of a smoothing regime deserves more attention than it customarily
receives. For work involving single brief trials as the unit of analysis it is often
necessary to strike a compromise by lengthening the record enough to permit
some frequency averaging, thus obtaining smoother estimates, but not so much
that the biological phenomenon of interest is excessively diluted and/or the
record becomes grossly nonstationary. For the analysis of long records a method
based on averaging of spectra derived from short, overlapped segments has been
shown to have excellent statistical properties (34, 35). There is no general solution
optimal for all cases.
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1.2. Model-Based Spectral Estimation

The model-based or parametric approach to spectral analysis, introduced to
EEG studies by Gersch (36) and Zetterberg (37), is fundamentally different in
character. The raw EEG is viewed as a stochastic process, the output of a linear
filter excited by white noise (note that this model can be appropriate descriptively
whether or not it bears any deep resemblance to the physiological mechanisms
that generate the EEG). Spectrum estimation consists of fitting an autoregressive
(AR) or autoregressive moving-average (ARMA) model to the observed time
data, and then calculating the implied spectrum via FT of the model coefficients
(38, 39). For the AR case, for example, a family of procedures exist which
optimize in a least-squares sense the predictability of the series from its own
past and/or future. Thus the basic single-channel AR model is of the form
x(t) 5 ok

i51 aix(t 2 i) 1 ei, where x(t) is the observation at time t, the ai are
scalars representing the contributions to x(t) of the observations at earlier times
t 2 i, k is the order of the model, and ei is the residual random error. To fit the
model the time series is essentially regressed upon its own prior history (hence
the name), using computational methods conceptually analogous to those of
classical multiple regression but with algorithmic improvements that capitalize
on structural constraints on the autocorrelation or autocovariance matrix of the
predictors (see (38), and especially (39) for algorithms; we omit further discussion
here of the computationally and statistically more complex ARMA model).

The crucial properties of these parametric modeling procedures are their capac-
ity to produce smooth, high-resolution spectra even from short data records,
provided the signal-to-noise ratio is adequate. The high-resolution property de-
rives from an implied extension of the observed time record beyond its physical
boundaries, based upon the fitted model, while the smoothness is associated with
the relatively high ratio of data points to estimated parameters. The quantity
m/k, where m is again the number of data points and k the model order, is
roughly equivalent to the notion of df in the FT case. Model order selection can
be accomplished using a variety of automatic or semiautomatic criteria which
work by trading off the improved prediction achieved by adding parameters to the
model against the increased variability of the resulting estimates. The traditional
criteria are known to be asymptotically equivalent, but recent work by Broersen
and Wensink (40) has identified specific improvements for several of the major
AR estimation methods in the finite-sample case (see also 41).

Based on large-sample results the AR spectral estimates are believed to be
asymptotically unbiased, consistent, and normally distributed (42–44), and practi-
cal experience to date appears to confirm these expectations. Parenthetically,
the experience of our lab strongly supports the superior performance on single-
channel data of Marple’s modified covariance algorithm (39) in terms of speed,
numerical stability, and resistance to undesirable effects such as peak-splitting
and phase-sensitivity. We believe these various desirable properties amply justify
the added computational burden of the model-based techniques when short data
records (say 2–4 sec or less) are appropriate to the targeted physiological
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phenomena. Detailed accounts of the various procedures are provided by
(38, 39, 44), the latter two including FORTRAN subroutines on diskette. Applica-
tions to EEG have been surveyed in (45), (46).

The measure of signal power at a given frequency in AR spectra is not peak
height (as in the FT case) but peak area (39, 44). This requires subroutines
that can accurately measure areas in the presence of shifting baselines, etc.—a
nontrivial problem in itself. Alternative approaches that circumvent this problem
are (1) the ‘‘FAD’’ method of Blinowska and Franaszczuk (47–50), which repre-
sents the EEG as a superposition of a small number of oscillatory modes, and
estimates the frequencies, amplitudes, and damping factors of the modes directly
from the transfer function associated with the AR model; and (2) the conceptually
related model of spectral parameter analysis (37, 51).

There is some interest in using the likelihood method to estimate the power
spectrum, and it has been shown that this approach is very promising (52, 53).
More recently, using cubic splines and indicator functions, Kooperberg et al.
(54) developed a fully automatic procedure called LSPEC for estimating both
continuous power and line spectra simultaneously. The software is available in
statlib@stat.cmu.edu and is based on maximum likelihood, with stepwise
addition and deletion of basis functions using a Bayesian information criterion
(BIC). A comparative study is also included in that paper showing that LSPEC
performs very favorably relative to other methods including the AR, MA, or
ARMA estimates.

1.3. Multivariate Analysis of Variance

Whichever class of spectral analysis methods is applied, the transformation
into the frequency domain results for each trial in a frequencies-by-channels real
matrix of estimated spectral descriptors. From this matrix we will extract a p-
component vector x of spectral response measures, which in our situation would
typically represent the estimated magnitude of the vibrotactile driving response
at each of the p channels during this stimulus exposure.3 This vector times its
transpose generates an ‘‘SSCP’’ matrix, containing the associated across-channel
sums of squares and crossproducts for the current observation. For the one-way
multivariate analysis of variance (MANOVA) situation illustrated in the diagram,
these quantities are pooled across observations, yielding mean vectors for each
group separately and for the entire sample, the total SSCP matrix, and variance–
covariance (or ‘‘dispersion’’) matrices for each group (for computational forms,
see for example 55–57).

The variance–covariance matrix S is the multivariate analog of the scalar
variance associated with univariate ANOVA. When constructed from samples
from a multivariate normal distribution it follows the Wishart distribution, which

3 Other potential sources of real vector-valued observations shown in the diagram will be discussed
subsequently. The identification of the number of variables entering the analysis with the number
of recording channels is of course not a requirement but a notational convenience appropriate to
our experimental situation.
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is the matrix analog of chi-square (see, e.g., 56, Section 3.5, or 58, Appendix
3A). Its ij th element is sij 5 sisjrij, where si and sj are the sample SD’s at channels
i and j and rij is their sample linear correlation. From this it can be shown that
the determinant of S, denoted det(S), is a scalar quantity proportional to the
squared volume of the p-dimensional solid (the ‘‘parallelotope’’) whose principal
edges are the vectors representing the variables (channels) in the space of the
observations used to form S (e.g., 57, p. 104; 22, p. 259). This quantity is therefore
called the ‘‘generalized variance,’’ and it plays a role in multivariate statistics
analogous to that of the ordinary variance in univariate statistics.

1.3.1. Testing Homogeneity of Dispersions

One such application is a maximum-likelihood test of homogeneity of disper-
sions, analogous to the test for equality of variances between groups in the
univariate situation. The test is based on the quantity

L 5 N ln(det(S)) 2 og ng ln(det(Sg)),

where N 5 og ng and Sg is the dispersion matrix for group g (55, Chap. 4; 56,
Sect. 7.4; 59; 60). Equality of dispersions is assumed by MANOVA, which for
the 1-way case uses the pooled within-group error to test equality of the group
mean vectors, and in principle the validity of that assumption should itself be
tested. In practice, however—and again as in the univariate case—many workers
proceed directly to the MANOVA since the test on dispersions is known to be
more sensitive to assumption failures than MANOVA itself. In our scheme,
however, it functions not so much as a preliminary to MANOVA as a first step
in the analysis of the covariance structure of the topographic data (discussed
later). Related maximum-likelihood tests for multiple homogeneity of covariance
matrices and homogeneity of populations (simultaneous equality of both the
mean vectors and covariance matrices) are discussed in (59, 60).

1.3.2. Reduction of Data Dimensionality

As shown in the diagram, the MANOVA procedure can be applied either
directly to the original variables (channels) or to a selected smaller set of linear
combinations of the channels that preserves most of the original variability.
Ratios of sample-size to dimensionality of at least 3 : 1–5 : 1 and preferably 10 : 1
or more are typically recommended for MANOVA (e.g., 61, p. 232) and it is
known that inclusion of variables which do not contribute to discrimination of
the experimental groups can severely reduce the power of the multivariate tests
(56, Sect. 4.8). Thus, with large numbers of intercorrelated channels and small
numbers of observations this dimensionality reduction—which can be accom-
plished using either principal components analysis (PCA) or multidimensional
scaling (MDS) techniques—can greatly improve the power and reliability of the
multivariate test results. It also directly characterizes structural features of the
topographic response pattern common to the experimental groups. We therefore
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digress briefly to describe these techniques, which appear in Fig. 1 on the back-
ward-leading arrows at the top (and bottom) of the diagram.

1.3.2.1. Data Reduction by Principal Components Analysis. Principal compo-
nents analysis (e.g., 56, 57, 62–64) finds p 3 1 linear combinations vi of the
channels having maximum variance (v9i Svi 5 max) subject to constraints of unit
length and mutual orthogonality (v9i vi 5 1, v9i vj 5 0 for i ? j). The solution
corresponds to a rotation of axes into alignment with the principal axes of the
original multivariate density, and is obtained by solving the characteristic equa-
tion Sv 5 lv, i.e., by calculating the eigenvectors and eigenvalues of S. Each
eigenvalue represents the variance of the points after projection onto the corre-
sponding axis, or equivalently the amount of the original variance that is ac-
counted for by that linear combination. If the p components are taken in order
of decreasing contribution, a small subset k , p will often account for 80–90%
or more of the total variance. Criteria for determining the optimal number of
components have been reviewed in (65). The coefficients or weights express the
contribution of each channel to each component, and may help to describe or
interpret the associated topographic patterns. It cannot be assumed, however,
that the components produced by PCA are physiologically meaningful (e.g.,
66; 67).4

If Y is the original N 3 p matrix of raw observations expressed in deviation-
score form, Ŷ represents its approximate reconstruction in terms of an N 3 k
matrix F of trial-by-trial scores on the k components and the p 3 k matrix V of
component weights which minimizes Y 2 Ŷ in a least-squares sense. However,
for any nonsingular ‘‘rotation’’ matrix T, Ŷ 5 FV9 5 FTT21V9 5 F1V91, showing
that F1V91 represents another solution which accounts equally well for Y (but
without possessing the variance-maximizing property that motivated the initial
solution). These orthogonal or oblique rotations of the first-stage components
according to various criteria of ‘‘simplicity’’ in the loading patterns can sometimes
improve interpretability of the component structure, but we will not discuss this
large subject here (see refs. cited). An example of physiologically interpretable
components extracted by spatial PCA is provided by (72).5

4 Silberstein and Cadusch (68) have demonstrated that any process, including volume conduction,
that causes the covariance between recording channels on a sphere to decrease as a function of their
angular separation will lead to the appearance of spherical harmonics as principal components of
the covariance matrix—i.e., to components corresponding to the overall size of the signal, anterior
vs posterior, left vs right, center vs periphery, etc. In effect this is a spatial analogue on the sphere
of the asymptotic equivalence of PCA and Fourier analysis in the time domain (e.g., 27, 31, 34, 69).
However, Valdes et al. (70) have shown that PCA of spatial structure can be greatly enhanced by
performing it on a frequency-specific basis such as we are advocating here, since the spherical-
harmonic pattern in real EEG data is principally associated with an overall 1/f shape characteristic
of the spectral background. In contrast with the spherical harmonics associated with this 1/f part of
the spectrum, which displayed approximately proportional eigenvalues and zero phase, the principal
components associated with specific signal elements such as alpha rhythms displayed clear and
appropriate topographic structure, rapidly declining eigenvalues and non-zero phase (see also 71,
p. 268 ff).

5 In an interesting paper which builds upon earlier uses of PCA, Harner (73) has proposed the
use of singular value decomposition (SVD) as a general method of analysis for m 3 p rectangular
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1.3.2.2. Data Reduction by Multidimensional Scaling. Multidimensional scaling
refers to a family of data analysis techniques that attempt to represent the
structure of the original topographic data in terms of a low-dimensional (usually
2-D or 3-D) space containing one point per variable (channel). The points are
arranged so that those that are close together represent channels with similar
responses, while those that are far apart represent channels with dissimilar re-
sponses (74–77; 56, p. 391–398; 57, p. 572–578). One possibly strong advantage
of MDS is its ability to relax assumptions concerning the level of measurement
of the responses. Good general-purpose MDS programs are available in SAS,
SPSS, and IMSL (see also 76).

1.3.3. MANOVA

We now proceed to the 1-way MANOVA itself. Matrices H and E can be
constructed that are analogous to the numerator and denominator of the familiar
univariate F test, specifically

H 5 Ol

g51
ng(x̄g 2 x̄T)(x̄g 2 x̄T )9,

E 5 Ol

g51
Ong

i51
(xgi 2 x̄g)(xgi 2 x̄g )9,

where x̄g and x̄T are the mean vectors for group g and the total sample, respec-
tively, and xgi is the observation on the ith trial in group g. Parallel to the
univariate case the total deviation sum of squares and cross products matrix is
thus decomposed exhaustively into parts reflecting the experimental con-
ditions and the within-cells error, and a test is constructed based on the relative
magnitudes of these quantities. There are actually a number of test statistics,
arising from different test construction methods, all of which are functions of
the eigenvalues of E21H (or equivalently of (E 1 H)21H). These same eigenvalues
are also solutions of the linear discriminant problem, which is to identify
linear combinations of the original variables (channels) that optimally discrimi-
nate among the experimental conditions in the metric of the error. Analogously
to the PCA situation, this involves finding p 3 1 vectors vi such that (v9i Hvi)/
(v9i Evi) is maximized, subject to the same constraints of unit length and mutual

matrices of raw evoked potential data. Basically,

SVD (X)
m3p

5 T
m3p

L
p3p

S9,
p3p

where L is a diagonal matrix containing the p singular values li in order of decreasing size. Rearranging
this expression shows that X P ok

i51 litis9i is a weighted sum of the principal (k , p) spatiotemporal
patterns in the data, where the ith such pattern, described by the outer product of the ith columns
of the T and S matrices, is weighted by the corresponding singular value. SVD thus generalizes
previous approaches which have analyzed either the temporal or the spatial structure of the data,
but not both simultaneously, using PCA methods. Harner also provides an interesting discussion of
properties and applications of the SVD, including references to a rotation method that approximately
standardizes the component structure across subjects (see 63).
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orthogonality of the vi. Successive discriminant functions, up to l 2 1 in number,
are extracted and tested in order of decreasing discriminating power (eigen-
values).

The MANOVA procedure thus exploits the covariance structure of the observa-
tions to determine not only whether but how the experimental groups are statisti-
cally distinguished by the across-channel patterns of response. The linear discrimi-
nant procedure is known to be optimal for the case of two groups with equal
covariance matrices, and in practice usually performs well, particularly when p is
large and N small, even if inhomogeneity is present and the theoretically correct
rule is quadratic (62, p. 163). Furthermore, the procedure is very general. The ex-
pressions for H and E given above, which were chosen to illustrate the general
character of the multivariate test in a familiar setting, are specialized forms of much
more general expressions that permit testing of arbitrary linear hypotheses of the
form CbU 5 A on the parameter matrix b of the multivariate general linear model
Y 5 Xb 1 E, where Y is the N 3 p matrix of measured responses for all trials, X
represents the association between the observations and the cells of the experimen-
tal design, and E is the error matrix (see 56 or 57 for details). Given an overall
significant result, various kinds of followup procedures are also available for de-
termining more precisely the sources and character of the between-group differ-
ences. Of particular relevance to topographic studies is profile analysis (loc. cit.),
which provides separate tests for differences of shape and elevation of the response
patterns between conditions. In combination with a log transform of the channel-
by-channel spectral response measures this approach solves in principle the prob-
lem identified in (78)—i.e., that treatment of topographic effects as channels 3
conditions interactions in the context of univariate ANOVA fails to distinguish
true changes in the topographic organization of the scalp field from changes in the
amplitude of the underlying source configuration. In sum, the MANOVA proce-
dure (which is available in all of the major statistical packages such as SAS, BMD,
and SYSTAT, provides a powerful general-purpose vehicle for experimental stud-
ies of EEG topography (see also 79).

We will postpone discussion of further steps in the analysis of between-channel
covariance structures until we have worked through the lower and middle sections
of Fig. 1, since each of these trajectories generates similar kinds of data structures
that can be analyzed in largely parallel ways.

2. COMPLEX MULTIVARIATE ANALYSIS BASED ON
MULTICHANNEL FT’s

Whereas the top section of Fig. 1 as described above is based upon p-fold
repetition of what remains fundamentally a single-channel spectral analysis
method, the bottom and middle sections represent analytical approaches that
attempt to preserve and utilize more of the information available in the raw
multichannel time series. The bottom section, like the top, starts with FT’s of all
the channels. However, instead of immediately calculating spectral magnitudes,
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which destroys phase information, we keep the data in complex form.6 The
extracted p-dimensional vector z for a particular frequency contains the cosine
and sine terms of the response at each channel in its real and imaginary compo-
nents, and when multiplied by its conjugate transpose z* yields an estimate of
S, the spectral matrix of the multichannel process at that frequency. S is complex
and asymmetric, but since S 5 S* it is Hermitian, which implies that its eigenvalues
are real. This leads in turn to the interpretation of the product of the eigenvalues,
det(S), as a ‘‘generalized spectrum,’’ analogous to the generalized variance of a
real multivariate sampling density, which represents the total energy of the
multichannel system at that frequency (80).

The estimate of S derived from the raw multichannel FT, like the single-
channel periodogram, is statistically unstable, and must be smoothed as usual
by averaging over frequencies, observations, or both (25–28). With short data
records of the sort we have so far been collecting (typically, T 5 2–4 sec),
frequency averaging in steps of 1/T would quickly lead to unacceptable loss of
frequency resolution, and averaging over observations is therefore the preferred
method (but see also below for additional comments on the smoothing regime).

2.1. Complex MANOVA

As shown in the bottom section of Fig. 1, estimates of the mean complex
response vectors and spectral matrices for the experimental groups and the entire
sample can be developed by pooling trials (observations) in precisely the same
fashion described earlier for real multivariate data. Moreover, a substantially
parallel body of statistical theory for complex multivariate data has been devel-
oped, based on the work of Goodman (81–83). Thus if the response vectors zi

are samples from a complex multivariate normal distribution, the spectral matrix
follows a complex Wishart distribution and this in turn permits not only maxi-
mum-likelihood tests for homogeneity and multiple homogeneity of the spectral
matrices but a complex discriminant-analysis procedure including significance
tests on the mean vectors (summarized in (34, 58, 84–93)). As in the real case,
complex PCA could also be carried out on the pooled spectral martrix to provide
dimensionality reduction and analysis/description of the common covariance
structure before proceeding to the test of group differences. To our knowledge,
these recent statistical developments have so far been utilized in the EEG context
only by Rawlings et al. (69, 94) and by a group of physicists and mathematicians
at the Cuban Neuroscience Center in Havana (70, 80), although they were also
clearly anticipated in the early work of Walter and Adey (95). They are not yet
available in ‘‘canned’’ form in any of the major statistical packages, but can
be implemented (and extended where necessary—e.g., (92))—using existing

6 Parenthetically, as pointed out by Ron Katznelson in (71, Chap. 6), since the FT is a linear
operation, enormous computational savings can be achieved in spatial filtering (Laplacian) procedures
by applying them to complex FT output at the frequencies of interest, rather than to the complete
raw time data.
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libraries of matrix subroutines such as LAPACK or IMSL, or high-level languages
such as MATLAB.

2.2. Properties of the Spectral Matrix

Insight into the nature of the FT-based spectral matrix can be obtained by
considering more closely the complex operations applied in forming it. If zi 5
(Rei 1 jImi) is the raw Fourier transform for channel i at frequency f, then the
ik element of the spectral matrix zz* containing cross-periodogram estimates at
f is defined as sik 5 ziz*

k 5 (ReiRek 1 ImiImk) 1 j(RekImi 2 ReiImk) 5
(Reik 1 jImik) 5 COik 1 jQUADik. If zi and zk are thought of as complex vectors
describing the activity at channels i and k at this frequency, with lengths FziF 5
(Re2

i 1 Im2
i )1/2 and angles Qi 5 tan21(Imi/Rei), then FsikF 5 FziF ? FzkF and

Qik 5 Qi 2 Qk. That is, the length of sik is the product of the lengths of zi and
zk, and its angle is the difference between their angles, i.e., their relative phase.
The real, in-phase, or ‘‘CO’’-spectrum part of the cross-products becomes largest
if zi and zk have the same orientation (positive if they are superimposed, negative
if inverted), while the imaginary, 908-out-of-phase, or ‘‘QUAD’’-spectrum part
becomes largest if they are at right angles to each other (96).

Smoothing the raw cross-periodogram estimates derived from the FT (i.e., the
spectral matrix) by vector averaging over frequencies, observations, or both
yields an improved estimate of the cross-spectrum with better statistical proper-
ties. From this, two important real quantities are derived—i.e., (magnitude-
squared) coherence and phase—that more directly capture specific structural
features of the multichannel process, i.e., the between-channel patterning of the
frequency-domain activity.7

2.3. Coherence

The coherence between channels i and j is defined as the normalized cross-
spectrum, i.e., sij/(siisjj)1/2, which is complex and has the same phase as the cross-
spectrum itself. For convenience, and to emphasize large values of coherence,
most workers prefer to use magnitude-squared-coherence (MSC), defined as
c2

ij 5 FsijF2/siisjj. Since FsijF2 # siisjj (Cauchy–Schwarz), the MSC lies between 0
and 1 (and ÏMSC, which occasionally appears in the literature, has the same
property). ÏMSC is analogous to the ordinary bivariate correlation coefficient
and measures the linear association between channel i and channel j at frequency
f, ignoring a constant phase difference. Similarly, c2

ij represents the proportion
of power at f common to both channels (32).

For pure sinusoids at frequency f observed simultaneously at two channels,

7 Nunez (71, Chap. 7, Sect. 14) also discusses use of the spectral matrix as the point of departure
for frequency–wavenumber spectral analysis, a set of techniques commonly applied in the physical
sciences for decomposition and measurement of complex wave phenomena such as water waves
traveling through the ocean or seismic waves propagating across an array of detectors. See also (97).
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c2 is identically 1. The measured coherence is reduced, however, by a variety of
factors including addition of noise or other signal components at one or both
channels, instability of phase relations across the frequencies or segments aver-
aged, small shifts in frequency between the sites, and other kinds of non-linear
effects (32, 98–100). Since sjj 5 sjjc 2

ij 1 sjj (1 2 c 2
ij) the power at channel j can

be decomposed into a part linearly predictable from channel i plus an orthogonal
residual representing contributions from all other sources, and the quantity
c 2

ij/(1 2 c 2
ij) thus becomes a useful measure of the relative size of these contribu-

tions. For a purely linear system it measures the signal-to-noise ratio, and for a
purely nonlinear system it measures the linear to nonlinear ratio, while for EEG
data both noise and nonlinearities presumably contribute to the denominator
(99). A test of the null hypothesis H0 : c2 5 0 is provided by

F 5 (k 2 1)
ĉ2

1 2 ĉ2,

which follows an F distribution with 2 and 2(k 2 1) df if H0 is true (58, p. 73).
Several technical factors are important in FT-based estimation of the MSC.

The raw data should be smoothly windowed to suppress leakage, which has been
shown to distort coherence estimates severely (99). Second, large fluctuations of
phase across the vector-averaged frequencies are known to bias the estimate
downward and should therefore be avoided if possible (32). This again leads to the
important issue of the structure of the smoothing regime. Our recommendation is
to do whatever minimum of averaging across frequencies is necessary to provide
estimates suitable for use by MANOVA (see below; related recommendations
are discussed in (99, 101)). Third, rapid phase changes between adjacent frequen-
cies can be produced by a sufficiently large time delay between two entirely
coherent series, and for this reason some authors recommend alignment—i.e.,
time-shifting so that the maximum cross-correlation occurs at lag zero—as a
general practice to eliminate the resulting negative bias (e.g., 27, 96). However,
in the range of frequencies and time delays likely to be encountered in EEG work,
this source of bias appears too small to warrant the considerable computational
expense of the alignment procedure. Carter (102) has derived an expression
showing that the downward bias is approximately equal to the true coherence
times a factor which is twice the ratio of the time delay to the total duration of
the sample.

In parallel with the classical statistical theory of multiple correlation and regres-
sion, the analysis of coherence structures can be extended to a variety of condi-
tional forms. If we can appropriately think of the channels as divided into two
groups X and Y, where our interest is in the relationships among the Ys with
the effects of the Xs removed, then the spectral matrix can be partitioned accord-
ingly, viz.

SSyy Syx

Sxy Sxx
D ,

and the spectral matrix of the Ys conditioned on the Xs then becomes
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Syux 5 Syy 2 SyxS21
xx Sxy. From this the conditioned coherences and phases of the

Ys are calculated as usual (28, 83; see also 103, for an application to EEG). The
composite linear predictability of the Ys (as outputs) from the Xs (as inputs)
can also be investigated using canonical correlation techniques (34, Chap. 10).

Two special cases of the general conditioning theory are usually of particular
interest, namely multiple and partial coherences, which are conceptually
analogous to the multiple and partial correlations familiar from classical
statistics. The multiple coherence associated with a given channel represents
its linear dependence on all other channels taken together, while the partial
coherence of channels i and j describes their linear dependence with the
effects of all other channels removed (27, 28). Using expressions derived in
(27), it can be shown that the squared multiple coherence of channel j is
1 2 1/(sjjsjj), and the squared partial coherence of channels i and j is
FsijF2/(siisjj), where sij is the ijth element of S21. Since the ordinary pairwise
and partial coherence matrices are each symmetrical—i.e., ĉ2

ij 5 ĉ2
ji, etc.—all

three types of estimates can be conveniently summarized in a single matrix
containing the multiple coherences on the diagonal and the other two types
in the upper and lower triangles (e.g., 104). The conditioning methods outlined
here provide in effect a statistical counterpart of physiological interventions
such as cooling and ablation, permitting the study of functional interactions
between particular brain structures or cortical regions with the linear effects
of other structures or regions removed. Lopes da Silva et al. (105) have
applied this approach productively in their studies of thalamocortical relations
underlying genesis of alpha rhythms in the dog, and Gersch and colleagues
(106, 107) have used it to identify the driving sources of human epileptic
seizure activity.

Theoretical and empirical studies indicate that the statistical properties of
coherence estimates are quite decent. The exact sampling distribution of the
MSC depends upon both the population coherence and the df associated with
the estimate, and has essentially the same form as the sampling distribution of
the squared multiple correlation coefficient, determined originally by R. A. Fisher
(108). The parallel development for MSCs was carried out by Goodman (81–83)
and extensive tables have been generated (109, 110). The properties of the
distribution are summarized in a particularly accessible and useful form by Carter
et al. (98), who provide the density and distribution function, exact and approxi-
mate expressions for the bias and variance of the estimator, and illustrations of
the density and distribution function under various conditions. The density is
unimodal and nearly symmetric for coherences in the range likely to occur in
EEG data (roughly, 0.1–0.9). Also, increasing the df of the estimate makes the
density taller and narrower without altering its location.

There is, however, a sizeable positive sampling bias which becomes progres-
sively larger as the population coherence grows smaller, and which could there-
fore confound between-group comparisons if not removed. An approximation
to the bias is provided by the quantity B 5 k21 (1 2 ĉ2), where k is the number
of frequencies and/or segments used to form the spectral matrix (111). Note that
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entirely incoherent series will show an average coherence of about 1/k (98). A
quantity suitable for further statistical analysis can be obtained by a simple two-
stage procedure which has been shown to provide good estimates even for
severely non-Gaussian (e.g., uniform or chi-square) data (111, 112): (1) remove
the bias—i.e., set ĉ2

1 5 ĉ2 2k21 (1 2 ĉ2) or zero, whichever is larger; (2) apply
Fisher’s r-to-z transform to the square root of the result (which both normalizes
the distribution and makes its variance approximately constant and independent
of the population coherence)—i.e.

tanh21(ĉ1) 5
1
2

ln
1 1 ĉ1

1 2 ĉ1
.

More complex procedures which may yield slightly better results, especially near
the extremes of population coherence, are presented in (113, 114).

Calculations based upon the exact expression for the variance (98) indicate
that even under worst-case conditions—i.e., using estimates based on averaging
over only two frequencies (or segments), with a reference population MSC of
0.33—between-group MSC differences on the order of 0.1 should be resolvable
using group sample sizes of about 25–30.

The same procedures can be applied to all other forms of coherence, which
as shown by Goodman (81–83) follow the same sampling distribution but with
df reduced by the number of additional channels involved in the conditioning.

2.4. Phase

The phase relationship between channels i and j at frequency f is calculated
from the sij cell of the smoothed spectral matrix at f as Q 5 tan21 (Im/Re). The
angles returned (for example by the FORTRAN function ATAN2 (Im, Re))
are in the range [2f, f], with positive angle implying that channel i leads channel
j. Partial phase spectra can also be calculated, using the conditioning operations
described above for coherence, which would reflect for example the time relation-
ship between channels i and j with the effects of other channels removed.

The sampling distribution of phase appears to be less fully characterized than
that of coherence. Its shape and variance both depend critically on the population
coherence. For c2 5 0 the distribution is uniform, while as c2 increases it converges
toward the normal (31, p. 315). Jenkins and Watts (27) and Bloomfield (96)
approach the distribution in terms of a Taylor series expansion of small complex
perturbations (a 1 jb) around the true value of the cross-spectrum, and conclude
similarly that the estimate is unbiased, is uncorrelated with the coherence esti-
mate, and follows a sampling distribution that is asymptotically normal. Further-
more, the variance decreases (and normality improves) with a factor g 5
(1 2 c2)/(c2 3 df), where df is the degrees of freedom associated with the
estimate. Thus the variability of phase estimates approaches zero as the MSC
and/or df increase, as we might expect. There is also a complicated dependence
on the magnitude of the cross-spectrum, since a constant amount of scatter in
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the z-plane entails progressively less uncertainty about the phase angle as one
moves away from the origin. Unpublished theoretical work by one of us (Lenz)
revealed that phases sampled from true cross-spectra lying close to the origin of
the z-plane can have quite bizarre and non-normal distributions. Although the
problem clearly merits further investigation, currently available information sug-
gests that individual phase estimates should have reasonable distributional prop-
erties and SD’s on the order of 158 or less if g # 0.1, particularly if the coherence
is high. Jenkins and Watts (27, p. 381) provide a useful chart, from which one
can estimate the sample size needed to resolve a given time difference as a
function of coherence (see also 115, 116).

Another possibility meriting further investigation is the use of phase informa-
tion to improve the structure of the smoothing regime by assuring that we average
across frequencies for which the phase is approximately constant. A possible
enhancement, if interest centers on a particular small segment of the spectrum,
would be to use the chirp-Z transform instead of the FFT (117, p. 263), to
concentrate the m/2 raw cross-spectral estimates around that narrower region.
The idea is to find some rational, data-guided basis for grouping raw estimates
made at intrinsically higher frequency resolution, so that the final smoothed
estimate optimally represents the targeted physiological phenomenon.

A related issue of special significance for topographic studies is the detection
and measurement of time delays between channels. The presence of a time delay
between two channels is indicated by a linear relationship between phase and
frequency across a band of adjacent frequencies at which they are coherent, and
the magnitude of the delay is proportional to the slope of that line. Gotman
(118) applied this idea fruitfully to analysis of the propagation of epileptic seizure
activity, and Ktonas and Mallart (119) have recently developed an improved
estimation method in which the phase at each frequency entering the regression
is essentially weighted by the associated coherence. In (119) it is also demon-
strated via simulations that this estimator and its associated theoretical variance
are robust in application to non-Gaussian (e.g., uniform or chi-square), band-
passed, and simulated seizure waveform data. A recent comparative study of
time-delay estimation methods (120) emphasizes the limitations of FT-based (vs
model-based) approaches to analysis of rapidly changing dynamic systems such
as epileptic seizure EEGs (see below).

Adey and Walter (121) provided a prescient early example of the potential
value of EEG phase information in behavioral and cognitive studies. One of
their many interesting observations involved an apparent reduction in cross-
spectral phase scatter within particular frequency bands at high levels of T-maze
performance in the cat. A possible alternative to their analysis procedure, which
involved construction of ‘‘confidence fans’’ for the magnitudes and phases of the
between-channel transfer functions estimated from single trials (28, 83, 122), is to
utilize a measure of the coincidence of angles sampled from a circular distribution,
defined as C 5 N21h(oN

i51 cos Qi)2 1 (oN
i51 sin Qi)2j1/2 with standard deviation

approximately (2(1 2 C))1/2 radians (123, p. 428–431). Large-sample approxima-
tions and a table of critical values appear in (124, p. 133–136). A potential
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difficulty with this procedure, however, is that all angles are weighted equally,
without reference to their associated cross-spectral magnitudes or coherences.
Note that in smoothing raw cross-spectra by separately averaging their real and
imaginary parts over frequencies this problem does not arise, since phases are
implicitly weighted by magnitudes in the vector averaging, and that the same
property will apply to complex multivariate analysis as described earlier. Scalar
operations on the real angles themselves, however, such as averaging over trials,
must be handled extremely carefully to assure meaningful results. In particular,
the set of angles averaged must not straddle the discontinuity at 08/3608 (see
also 125 for related discussion).

2.5. Real Multivariate Analysis of Coherences and Phases

The distributional information summarized above clearly supports the applica-
bility of real multivariate procedures (top section of Fig. 1) to coherence measure-
ments, and with adequate care to phase measurements as well. Consequently,
one general approach to analysis of these matrices is simply to string out a vector
of the observed values—coherences, for example–on a trial-by-trial (or subject-
by-subject) basis and subject these to MANOVA as described previously. Since
there are p(p 2 1)/2 distinct pairings of the p channels, however, some kind of
selection or dimensionality reduction must be applied to constrain the number
of variables as the number of channels increases, in accordance with the sample
size/dimensionality rules quoted earlier. Prior EEG or metabolic imaging studies,
for example, might have identified a subset of especially important coherences
suitable for further analysis (e.g., 126). Alternatively, PCA or MDS could again
be applied for reduction of dimensionality and identification of key structural
components. The p multiple coherences could themselves form an interesting
set of variables reflecting the total interrelatedness of the channels. Carrying this
compression of data to the limit, the negative logarithm of the determinant of
the complex coherence matrix can be interpreted (80) as a scalar measure of
‘‘generalized coupling,’’ analogous to the ‘‘generalized spectrum,’’ det(S). Simi-
larly, one might calculate the mean and SD of the p(p 2 1)/2 real pairwise coher-
ences.8

A significant example of the use of phase information in topographic analysis
is the work of Walter Freeman (11), who has carried out extremely detailed
studies of spatiotemporal patterns of gamma-band (‘‘40 Hz’’) activity engendered
in rabbit olfactory bulbar cortex near the peak of the respiratory cycle. For this
purpose, phases determined individually at each channel could be measured (and
mapped) relative to that of an arbitrarily selected channel, or to the average
phase of all channels. In the context of our own studies (6) the phase of the

8 We also mention in passing an interesting paper (127) which develops an overall coherence
measure, Cij 5 ofFsij ( f)Fĉ( f)/ofFsij ( f)F that weights coherences across frequencies by the associated
cross-spectral magnitudes. Although the neurophysiological rationale offered for this measure ap-
pears flimsy, the author applies it successfully both to narrow-band photic driving responses and to
wide-band characterization of cortical functional state prior to stimulus onset.
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cortical driving response with respect to that of the vibratory stimulus itself is
an important response parameter which is expected to undergo systematic and
spatially differentiated changes as a function of experimental conditions such as
stimulus magnitude or the stage of adaptation. Consequently, it would be natural
for us to extract from the spectral matrix for each trial a vector containing the
observed response lag at each channel, and to subject these to MANOVA.

3. COMPLEX MULTIVARIATE ANALYSIS BASED ON
MULTICHANNEL PARAMETRIC MODELS

We turn now to the middle section of Fig. 1, which emphasizes a parametric
or model-based approach to multichannel analysis that has only recently become
computationally practical for realistically large arrays of channels. Such models
have been advanced for EEG especially by W. Gersch and his colleagues
(36, 128–132) and by K. Blinowska and hers (104, 133). As in the case of
single-channel analysis, the basic idea is to identify an AR or ARMA model
that fits the time-domain data optimally in a statistical sense, and then to
calculate the required spectral parameters from the fitted model. The basic
multichannel time-domain AR model9 is of the form x(t) 5 ok

i51 Aix(t 2 i)
1 e(t), where x(t) is the vector of samples at the p channels at time t, each
of the k Ai’s is now a p 3 p matrix, each row of which expresses the
contributions to the corresponding channel at time t of all the channels at
time t 2 i, k is again the order of the model, and e(t) is the residual error
vector. In (104) such a model is fitted by efficiently solving a multichannel
version of the Yule–Walker equations. (Other algorithmic approaches to fitting
multichannel AR models are available, and may as in the single-channel case
prove to have better properties (39, 134), but this would not affect subsequent
discussion.) Model order selection can again be determined in a semi-automated
way using multivariate generalizations of the single-channel test criteria (39,
44, 104). An FT of the model coefficients produces the estimated transfer
function of the underlying multichannel process at each frequency, and this
in turn leads to estimates of the spectral matrix and its offspring—i.e., the
matrix of spectral and cross-spectral magnitudes, and the matrix of multiple,
pairwise, and partial coherences as described previously.

Kaminski and Blinowska (133) have developed one further p 3 p real matrix
displaying a new quantity, the ‘‘directed transfer function (DTF).’’ Building upon
earlier attempts to define a directed coherence function, the directed transfer of
channel j to channel i is calculated directly from the transfer function of the

9 At the moment there seems to be little reason to pursue further development of the computation-
ally much more intensive multichannel ARMA model for purposes of EEG analysis. Marple (39,
p. 397) points out that the multichannel AR model in fact provides for ARMA-type spectra of the
individual channels, with corresponding flexibility to fit a variety of spectral shapes. Not surprisingly,
the few direct comparisons of multichannel AR and ARMA models currently available in the
literature—notably from (129)—yielded virtually identical results. The penalty for the slight improve-
ments possibly gained by the ARMA approach is a considerable inflation of the number of estimated
parameters, and a corresponding increase in the required length of the time sample.
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fitted AR model, essentially by dividing the contribution of channel j to channel
i by the sum of all contributions to channel i (see the original paper for details).
In effect this calculation utilizes phase information implicit in the transfer function
to construct measures of the capacity of each channel to ‘‘drive’’ each other
channel in an informational sense. This (non-symmetric) p 3 p matrix of DTFs
therefore appears particularly useful for tracking the ‘‘flow’’ of frequency-specific
information through the recording array. The statistical properties of the DTF
have not yet been determined, but are likely to be similar to those of coherence
estimates. The properties and power of the DTF method are illustrated in (135)
using intracranial recordings of epileptic seizure EEGs.

Two general points about the model-based (vs FT-based) approach to multi-
channel analysis merit special emphasis: First, the AR model is a true multichan-
nel model in the sense that the calculated spectra and cross-spectra reflect the
interdependencies of all the channels taken simultaneously, in contrast with the
FT approach which obtains them as products of the transforms of individual
channels taken just one or two at a time. Second, the desirable high-resolution and
smoothness properties described earlier for single-channel parametric spectral
estimates continue to hold in the multichannel case. That is, relatively good and
low-variability estimates of the spectral matrix and associated quantities can be
obtained from quite short data records, since most of the noise has already been
removed, as it were, by fitting the AR model. For coherence estimates, for
example, the bias factor is reduced to k/m, and the variance becomes approxi-
mately (k/m)2, where k is again the order of the model and m the number of time
samples (129). Similarly, multichannel AR algorithms yield superior estimates of
time delays in rapidly changing dynamic systems (120). This appears to open up
significant new possibilities for single-trial correlation of EEG patterns with
human psychophysical or cognitive responses (48, 129, 134).

One pathway to further analysis of the multichannel AR results again involves
extracting vectors of real-valued measures from the various matrices and sub-
jecting these to MANOVA. As described previously, these measures might repre-
sent all the cells of a matrix, a selected subset of the cells, or summary measures
constructed to reflect overall properties of the system in a more compact way.
In the case of DTFs, for example, one such summary vector might contain for
each channel j of the recording array oi?j DTFij which would measure the total
capacity of that channel to ‘‘drive’’ the other channels in the array, integrated
over a particular range of frequencies. Coherence and phase information can be
extracted and processed in similar fashion, as described earlier.

The complex spectral matrices themselves can also be pooled across observa-
tions and analyzed using the methods of complex multivariate analysis described
previously. However, there is no quantity analogous to the FT-based ‘‘observa-
tion vector’’ z at frequency f, the spectral matrix S being computed for the AR
model from the relation S 5 HVH*, where H is the estimated transfer function
and V is the calculated matrix of residual errors. For this reason, complex discrimi-
nant analysis (58, 93) is not available in this case as a method for testing and
characterizing between-condition differences.
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One readily available and practical alternative is to construct empirical confi-
dence regions cell by cell for the matrices of interest by pooling them across
observations (trials or subjects) within the experimental groups. Although this
is certainly a worthwhile first step, it suffers essentially the same liabilities, in
terms of multiple-testing problems and preoccupation with pairwise comparisons
of experimental groups, as current topographic mapping methods (136, 137;
hence the broken lines in Fig. 1).

4. METHODS FOR BETWEEN-GROUP COMPARISON OF MATRICES

For a more general solution, depicted on the right side (center) of Fig. 1 as
the final common pathway for all three of its major sections, we turn to the
growing family of methods, many quite recent in origin, for comparison of covari-
ance, correlation, and proximity structures among multiple groups. Although
with DTFs the final matrix estimate for each group is normally obtained by
averaging over the individual DTF matrices themselves (133), for the other
spectral quantities the preferred method is to average the underlying spectral
matrices and then calculate the coherences, phases, etc., from these averages.

Unlike the univariate case, in which the scalar variances of the groups are
either homogeneous or inhomogeneous, period, the multivariate situation per-
mits varying degrees or types of similarity between matrices. A useful tool for
exploring the degree of similarity is a recent generalization of ordinary principal
components analysis to multiple groups. This procedure, simultaneous compo-
nent analysis (SCA, 138–140), identifies a single set of components that accounts
for as much as possible of the variance in all the groups simultaneously. Compari-
son of the SCA solution with individual PCAs of the groups in terms of the
amount of variance explained and the structure of the weights provides insight
into both the extent and the character of between-group differences in covariance
structure. Software to perform the analyses, including rotation procedures and
interpretational aids, is available from IEC ProGAMMA, c/o Drs. K. P. Koning,
P.O. Box 841, NL-9700 Groningen, The Netherlands.10

Results generated by SCA, together with any known neuroanatomical/neuro-
physiological constraints, can be deployed into a more formal, confirmatory,

10 Flury (62) has presented a different approach to simultaneous PCA in multiple groups, based
on a novel algorithm for simultaneous diagonalization of matrices. Specifically, he establishes a five-
level hierarchy of relationships of increasing complexity in terms of the number of parameters
required by an adequate model of the data, together with a sequential maximum-likelihood
decomposition/testing procedure for identification and characterization of the best-fitting model for
a given dataset. Among the datasets he analyzes in this way, with new and interesting results, is the
iris data used by R. A. Fisher in his famous original exposition of the linear-discriminant problem.
He also provides in FORTRAN the core algorithm (also available in IMSL as subroutine KPRIN,
or double-precision version KDPRIN, which provides it in both maximum-likelihood and generalized
least-squares versions). Although further practical experience will be needed to evaluate the utility
of these procedures relative to SCA, it appears that Flury’s method could, in principle at least,
produce solutions that are nicely diagonal but whose common components account for relatively
little of the variance in the original data (H. Kiers, personal communication). See also below and
note 11.
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or hypothesis-testing stage of analysis using existing commercial software for
specification and testing of structural equation models. For example, as part of
their long-term effort in this area, Jöreskog and Sörbom (141–145), have pre-
sented a comprehensive maximum-likelihood procedure which applies specifi-
cally to real, symmetric matrices of the covariance type—such as the dispersion
matrices generated in real multivariate analysis (top section), or matrices of cross-
spectral magnitudes at a particular frequency (bottom and middle sections)—and
which in principle permits testing of any hypothesis regarding between-group
differences in factor structure. To illustrate these fully general estimation and
testing procedures, Jöreskog (142) also outlines a sequence of progressively
restrictive tests that might naturally and routinely be applied to a set of covariance
matrices for which the null hypothesis of homogeneity of dispersions (complete
invariance of factor structure across groups) has been rejected by the overall
test described earlier. For example, if the hypothesis of an equal number of
common factors in each group is tenable, one can go on to test equality of the
loading matrices and so on, adding further elements of the complete factor
structure at each step. Sörbom (143) extends Jöreskog’s method to test invariance
of the factor means, and Byrne et al. (146) illustrate how to deal with partial
measurement invariance and identify sources of between-group differences.
These procedures are available, fortified by large amounts of practical experience
(particularly in educational and sociological contexts), through the LISREL
software package (144, 145), which is available in SPSS and as a standalone, and
through related systems such as EQS in BMDP, COSAN, and (soon) PROC
CALIS in SAS. The potential sensitivity of the maximum-likelihood test proce-
dures to failures of their distributional assumptions, particularly with small sample
sizes, is effectively addressed within these packages by providing tests of multivar-
iate normality, alternative model-fitting and test criteria, bootstrap methods for
estimating the distributions of model parameters, etc. A structural equations
approach to analysis of functional brain topography has recently appeared in
the context of metabolic imaging studies (147).

Coherence matrices are much like conventional bivariate correlation matrices,
which for decades have been the central data objects of the factor-analytic
tradition in psychometrics. Tucker and Roth (148) were apparently the first
EEG researchers to recognize this relationship, and to explore systematically
the application of both PCA and factor-analytic methods to coherence matrices
as a method of topographic analysis. Factor analysis is a large and complex
subject (e.g., 149–151), but in brief, it differs conceptually from PCA in attempting
to fit a statistical model which assumes that the observed variables include mea-
surement error, and which attempts to explain the correlational structure of the
original data in terms of a small set of underlying or ‘‘latent’’ common variables
(the factors). A key step in the iterative computational procedures associated
with the principal-factor method applied by Tucker and Roth (148) is initial
estimation of the ‘‘communalities,’’ quantities placed on the diagonal of the
correlation matrix which represent the proportion of the variance of each variable
(channel) to be explained by the common factor structure, and for this purpose



KELLY ET AL.152

they sensibly used the squared multiple coherences of the channels. Orthogonal
and oblique rotations were applied to the initial solutions to obtain simpler and
more interpretable factor structures. As is often the case in practice the PCA
and factor-analytic approaches produced generally similar results (64), although
the latter appeared to be slightly more consistent over repeated measurements.
We comment parenthetically that most statisticians strongly prefer recently devel-
oped scale-free maximum-likelihood and generalized least-squares factoring
methods (56, 57, 63); however, the results are again unlikely to differ remarkably
from those obtained by the more traditional methods, which are also less compu-
tationally demanding.

A secondary goal of Tucker and Roth (148) was to compare and contrast the
factor structures emerging under two different experimental conditions. They
did this in the traditional impressionistic, narrative style, but pointed out correctly
that development of more formal and general comparison methods has become
an area of intense activity in psychometrics. In particular, the LISREL-type
procedures discussed above, although initially developed for analysis of covari-
ance matrices, should be applicable to coherence matrices as well.

Another set of approaches derives from the seminal work of Ledyard Tucker
(152–154), which has inspired development of a family of ‘‘multimode’’ exten-
sions of traditional factor-analytic, PCA, and MDS methods to data matrices of
more than two dimensions (see (155) for an excellent survey). In the situation
at hand, for example, exploration and description of similarities and differences
in topographic structure expressed in the covariance and coherence matrices of
the experimental groups can appropriately utilize techniques of weighted or
individual-differences multidimensional scaling applied to the channels 3 chan-
nels 3 groups data structure (e.g., 76, especially Section 4.5; 77; 155). The
general-purpose MDS program ALSCAL, for example—which is available in
SPSS, IMSL, and older versions of SAS, and as a FORTRAN standalone—can
perform metric and nonmetric individual-differences scaling for both symmetric
and nonsymmetric matrices of real data, and would thus support exploratory
analysis of phase or DTF matrices as well. Related multimode techniques can
in principle also be applied to more complete data structures such as frequen-
cies 3 channels 3 conditions, and even to these same data structures with subjects
added as a fourth mode of classification (155).11

11 Field and Graupe (156, 157) have recently provided the first application of a multimode model
to multichannel evoked-potential data, fitting the direct parallel-factors (PARAFAC) model of
Harshman (155, 158) to multi-subject visual evoked potential data (i.e., a timesample 3 channels 3

subjects design). Importantly, an identical trilinear statistical model had been derived independently
by Möcks (159) from a priori reasoning about the biophysical origins of evoked potentials. The
authors explored a number of the many data preprocessing and computational options associated
with the nonlinear least-squares minimization procedure and were able to obtain a unique and
apparently meaningful (i.e., interpretable) solution that was reproducible across subject groups. The
rotational indeterminacy and orthogonality constraints of PCA-type methods, including the SVD
method (73; see note 5), thus appeared to be overcome by this multimode approach, at the cost of
both significantly increased computation and the need to make strong assumptions about the structure
of the data—in this case that each temporal component is associated with a specific spatial component,
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Principal components analysis of the Hermitian spectral matrix was introduced
to EEG topographic studies by Nunez (71, pp. 268 ff) who used it to analyze
the spatial distribution of certain alpha-band frequency components of the resting
EEG in individual subjects. The eigenvectors of this complex matrix are them-
selves complex, which permits construction of separate topographic maps for
the amplitudes and the phases of the extracted components. Although certainly
useful, these results remain largely at the level of description of topographic
patterns condition by condition, rather than formal analysis of between-condition
similarities and differences in topographic organization of the overall activity
patterns. A partial solution is provided by the tests on complex covariance
matrices discussed in (92). However, the LISREL-type and multimode methods
referenced above unfortunately apply only to real data at present, and although
the extension to the complex case is presumably feasible, to our knowledge this
has not yet been attempted.

5. RELATED TOPICS

This completes our outline of the basic framework of statistical resources for
frequency-domain analysis of topographic patterns. Before concluding, however,
we need to say a bit more about some practical issues in application of these
techniques, and about some related techniques that we have consciously slighted.

5.1. Data-Acquisition Methods

Accurate measurement of topographic patterns clearly places strong demands
on the EEG data-acquisition system. Between-channel phase and amplitude
differences of instrumental origin should be eliminated by simultaneous sample-
and-hold on all amplifier channels, coupled with careful equalization or at least
measurement of their transfer functions (160, 161). It has also been pointed out
many times that the choice of common reference for the initial recording is
especially important for EEG topographic studies, since it determines the zero-
potential line of the measured scalp field (e.g., 17, 162, 163). More generally,
since the signal recorded is actually the difference between the potentials at the
active and reference sites, activity at the reference can influence the amplitude
and phase of signals attributed to the targeted sites—and measurements of
coherence and phase between them—in a frequency-dependent, significant, and
largely unknown manner (164). In our experimental situation a reasonably good
approximation to the idealized remote or indifferent common-reference point
is provided by the earlobe ipsilateral to the stimulated hand (165). The balanced
noncephalic reference (166) would also be a good choice in many applications.

and that this spatiotemporal structure is substantially common to all subjects. These assumptions of
the model could be roughly tested by its ability to fit the raw data, and appeared tenable for this
single-condition experimental design. They would likely hold even better in a single-subject design
with replications as the third mode of classification. In its indirect mode PARAFAC would also
complement the LISREL-type approach to analysis of multiple covariance matrices, discussed pre-
viously.
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However, in most settings reference-independent surface-Laplacian methods
appear likely to provide the best starting point for topographic analysis (164).
These also reduce between-channel correlation due to volume-conduction effects
(note 4), enhance spatial resolution, and have the great advantage for most
neuropsychological purposes of emphasizing local cortical sources at the expense
of deeper and/or more distant ones (e.g., 2–4, 167).12

5.2. Data Screening and Distributional Considerations

Second are some issues related to data integrity and data screening. For exam-
ple, with larger numbers of recording channels it becomes increasingly likely
that on any given trial one or more of the channels will be corrupted by some
form of artifact. We believe that despite its high cost the safest policy in general
is to exclude all the data from such trials from further analysis, in the interest
of maximizing fidelity of the observed topographies. Special attention should
also be paid to elimination of outliers from the derived spectral quantities.
Outliers have bad effects in general, but especially on tests involving determi-
nants. Related to this is the general question of distributional assumptions and
the effects of violations. For several of the measured quantities such as FT-based
autospectral magnitudes and between-channel coherences, transformations have
been recommended that appear to normalize and/or otherwise improve their
statistical properties, and estimates related to coherence and phase have specifi-
cally been shown in extensive simulation studies to be robust against violations
of Gaussianity assumptions (112, 119). Although tests for multivariate normality
of vector-valued observations are available (56, 57, 172), MANOVA appears to
enjoy the same robustness against assumption failures as its univariate counter-
part, particularly when the group N’s are roughly equal, the number of variables
is not too large in relation to the sample size, and the dispersion matrices are
not grossly inhomogeneous (e.g., 56, 57, 173). Also, it is significant that many
major contributors to time-series theory have specifically encouraged analysis of
real, finite data with the expectation that desirable large-sample or theoretical
properties will at least approximately hold (32, 34, 81, 82, 174). Marginal statistical
results should certainly be regarded with suspicion, however, particularly if they
cannot be replicated. Alternative approaches worth considering include appro-
priate normalizing transformations (57), replacement of the original interval-
scale data by their ranks, and construction of brute-force approximations to

12 Recent reports by Biggins et al. (168, 169) have suggested that the spherical spline procedure
of Perrin et al. may artifactually and significantly inflate measured coherences. However, Perrin (170)
and Pascual-Marqui (171) have strongly disputed this. We agree in principle with the latter authors,
while recognizing that in practice small effects of the type identified by Biggins et al. may well exist.
Any kind of spatial smoothing involves processing against noise, and thus necessarily increases
coherence. However, whether this increase is ‘‘artifactual’’ or not depends on the relationship between
the smoothing regime and the volume-conductor properties of the head. The various spline methods
seek to provide spatial bandpass filters that match these properties as nearly as possible, and to the
degree that they succeed in this they would not be expected to produce spurious increases in
coherence.
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nonparametric randomization tests by repeated calculation of test statistics under
random assignment of trials (cases) to groups (175). Jackknifing and cross-valida-
tion techniques can also be used to explore the generalizability of results, and
are especially important in the context of classification problems (61).

5.3. PROBLEMS OF NONSTATIONARITY AND NONLINEARITY

The techniques outlined in this paper derive mainly from linear systems theory
applied to jointly Gaussian and weakly stationary random processes. This is
clearly at best an idealization of the real situation. The EEG is approximately
stationary only over short stretches of time and its amplitude distribution is often
strongly non-normal (176, 177). Nonlinear effects are also certainly abundant in
the nervous system. A pertinent example at the population (EEG) level is the
strong tendency for the initial cortical driving response set up by a vibrating
probe to be displaced slightly in frequency from that of the stimulus (7). This
feature can make the connection between the stimulus and the response, or
between the responses observed at different scalp locations, invisible to the
methods we have described—even if the two frequencies fall within the same
frequency band at the base resolution of the analysis—if the record is sufficiently
long (100). Various techniques have been proposed which may be capable of
addressing such issues, including nonlinear cross-spectral analysis (178), ap-
proaches based on the theory of mutual information (130, 179, 180), and higher-
order spectral analysis (181, 182), all of which have been applied in at least
exploratory fashion to EEG data. The theory of nonlinear dynamic systems and
nonstationary random processes is also currently undergoing vigorous develop-
ment in various areas of mathematics and engineering. However, our own strong
inclination is to avoid or at least postpone dealing with the substantially greater
mathematical and computational complexity of these approaches pending a clear
demonstration that the already very general and versatile techniques outlined
above are incapable of doing the job. That the basic multichannel AR model is
appropriate for most EEG data is strongly suggested by the fact that it usually
yields a clear minimum in the order-selection function, associated with low
residual variances. Moreover, it can be modified in various ways to handle special
situations. To deal with nonstationary EEGs, for example, Gersch (128) has
proposed a time-varying extension of the basic model in which the AR parameters
themselves become smoothly varying functions of time. Less computationally
intensive approaches to nonstationarity which can also handle larger numbers
of channels apply a conventional multichannel AR model to successive small
segments of the process, possibly overlapped (e.g., 134, 183). Similarly, nonlinear
effects can often be handled in the context of linear models by incorporating
appropriate functions of the variables (e.g., polynomial terms), while leaving the
model linear in its parameters. These examples illustrate how the basic ap-
proaches we have outlined, which themselves usually provide at least a good
first approximation to a correct model of the situation, can also be adapted
further to deal with non-stationarity, non-linearity and related assumption
failures.
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6. CONCLUSION

We believe it is axiomatic that statistical analysis of interactions among cortical
areas is the key to realizing the full potential of high-resolution EEG/MEG
techniques as a research tool for human functional imaging studies. For neural
activities which are appropriately quantified in the frequency domain, the frame-
work we have outlined addresses this objective by identifying a comprehensive
set of analytical methods, together with sources of enough low-cost computing
power to apply them economically to real data. By assembling a sizeable part
of the relevant theory and practice in one place we hope to have contributed to
their effective deployment in future research.

APPENDIX: NOMENCLATURE

Notation Meaning

v, x, . . . vectors
x̄ vector of means of x
f frequency
c 2

ij magnitude-squared-coherence of channels i and j
G diagonal matrix
H ANOVA sum of squares (hypothesis)
E ANOVA sum of squares (error)
l eigenvalues
Re real part of a complex number
Im imaginary part of a complex number
CO co-spectrum
QUAD quad spectrum
sjj power spectrum
sij cross-power spectrum
S variance–covariance matrix
SVD(X) singular value decomposition of a matrix X
det(S) determinant of matrix S
T21 inverse matrix of T
T9 transpose of T
x(t) time series
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