Incidental Pulmonary Nodule

Radiology-Pathology Correlation Lisa Friedman August 2018

History

- O 71 yo male
- O PMHx:
 - O HTN, HLD
 - O Parkinson's disease
 - Urothelial carcinoma s/p partial cystectomy, on immunotherapy
 - Cutaneous squamous cell carcinoma (superficially invasive, fully excised 26 yrs ago)
- Presented to an outside physician c/o abdominal pain, diarrhea, constipation
 - Obtained CT C/A/P
 - Incidentally found 1.7 cm LUL pulmonary nodule

History

• Smoking history:

- 2-3 cigars/wk x 45 yrs, quit 5 yrs ago
- Occasional marijuana
- Remote past history of crack
- No pulmonary/constitutional sx

CT

• Solitary left upper lobe pulmonary nodule

CT

• Solitary left upper lobe pulmonary nodule

CT

- Solid •
- •
- •
- Homogeneous Not spiculated Well-demarcated •

Fleischner Society Guidelines

Fleischner Society 2017 Guidelines for Management of Incidentally Detected Pulmonary Nodules in Adults

A: Solid Nodules*

Nodule Type	Size			
	<6 mm (<100 mm ³)	6–8 mm (100–250 mm ³)	>8 mm (>250 mm³)	Comments
Single				
Low risk [†]	No routine follow-up	CT at 6–12 months, then consider CT at 18–24 months	Consider CT at 3 months, PET/CT, or tissue sampling	Nodules <6 mm do not require routine follow-up in low-risk patients (recommendation 1A).
High risk†	Optional CT at 12 months	CT at 6–12 months, then CT at 18–24 months	Consider CT at 3 months, PET/CT, or tissue sampling	Certain patients at high risk with suspicious nodule morphology, upper lobe location, or both may warrant 12-month follow-up (recommendation 1A).

MacMahon et al 2017

FDG-PET/CT

FDG-PET/CT

CT-guided biopsy

Intra-procedural imaging

- Conscious sedation (midazolam and fentanyl)
- BioSentry used postbiopsy

CT-guided biopsy

Intra-procedural imaging

FNA: Diff-quik stain

- Highly cellular
- O Loosely cohesive
- O Bland, uniform cells
- High/mid N:C
- Fine chromatin, lack of prominent nucleoli

FNA: Pap stain

- O Highly cellular
- Loosely cohesive
- Bland, uniform cells
- Fine chromatin, lack of prominent nucleoli

CT-guided biopsy

Intra-procedural imaging

Challenges with FNA diagnosis of pulmonary NETs

- 51% of cytologic dx of typical carcinoids agreed with the final histologic dx (Stoll et al 2010)
- Air-drying
- O Crush artifact
- O Hypercellularity
- Sampling error

Core biopsy: H&E stain

- Histology: eosinophilic cytoplasm
- Architecture: nested

Histologic classification: pulmonary NETs

• Low-grade (2):

- Typical carcinoid: well-diff, epithelioid or spindled cells, round or oval nucleoli, salt-and-pepper chromatin, no nucleoli, no mites.
- Atypical carcinoid: features similar to typical carcinoid but with 2-10 mites/2 mm² and/or necrosis

• High-grade (2):

- Small cell lung cancer: hyperchromatic, nuclear molding with lack of clear demarcation between cells, no nucleoli, many mites, necrosis
- Large cell neuroendocrine carcinoma: neuroendocrine tumor with abundant cytoplasm and/or single large nucleolus

Staining profile: carcinoids

- + synaptophysin, chromogranin A, CD56, INSM1
- +cytokeratin (80%)
- +TTF-1 (50%)
- +ER (50%)
- Ki-67 can help evaluate proliferative activity

Core biopsy: special stains

Chromogranin

Synaptophysin

GATA3

Bottom-line diagnosis

OLow-grade epithelial neoplasm

Epidemiology: carcinoids

- 2-5% of all lung cancers
- 20-40% arise in nonsmokers
- Genetic factors: 5% patients with MEN I
 - Typical carcinoids: 47% have 11q del
 - Atypical carcinoids: 55% have 11q del
- Average dx at 30-40 yo in typical carcinoids (vs 60-70 yo in SCLC)

Imaging features: carcinoids

- Size: typical carcinoid \leq 2 cm, atypical carcinoid \geq 4 cm
- Edges: typical carcinoid = smooth, atypical carcinoid = not smooth
- May see IV contrast enhancement vascular lesions
- 30% have calcifications
- Variable avidity on PET/CT
- Somatostatin receptor scintigraphy: identifies 80-90% NETs but with low sensitivity for poorly-diff tumors

Gross description: carcinoids

- Tan/yellow
- 75% intraluminal (bronchus),
 25% intraparenchymal (lung)
- May be ulcerated, vascular

Fisseler-Eckhoff and Demes, 2012

Clinical considerations: pulmonary carcinoids

• Treatment: surgery

Wedge resection vs lobectomy

• Metastatic potential:

• Typical carcinoids: 10-15% to LN, 3-5% to remote sites

• Atypical carcinoids: 50% to LN, 25% to remote sites

• Prognosis – 5-yr survival:

• Typical carcinoid: 92-100%

• Atypical carcinoid: 62-88%

Follow-up

- OR on 8/6: flexible bronchoscopy and LUL VATS wedge resection → 1.5 cm nodule
- Patient is recovering well
- Histologic diagnosis: metastatic urothelial carcinoma
 - Found weak, focal, nuclear GATA3 positivity and cellular features consistent with the primary tumor

Follow-up: urothelial carcinoma

• Epidemiology:

- Average age of dx: 70 yo
- M > F (3:1)
- Histology: papillary vs nonpapillary (micropapillary, sarcomatoid)
 - Loosely cohesive
 - May be plasmacytoid
 - Fine chromatin, prominent nucleoli
- Special staining:
 - CK7+ (90-100%), CK20 (50%), THR, high molecular weight thrombomodulin
- #1 prognostic factor: invasion
- Metastatic sites: LN, liver, lung, bone, adrenal

Resources

- 0 1. BioSentry tract sealent system: How it works. <u>http://biosentrysystem.com/cms/how-it-works</u>. Accessed 8/5, 2018.
- 2. Fisseler-Eckhoff A, Demes M. Neuroendocrine tumors of the lung. Cancers (Basel). 2012;4(3):777-798. doi: 10.3390/cancers4030777 [doi].
- 3. Li ZZ, Huang YL, Song HJ, Wang YJ, Huang Y. The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules: A meta-analysis. *Medicine (Baltimore)*. 2018;97(12):e0130. doi: 10.1097/MD.000000000010130 [doi].
- 4. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the fleischner society 2017. Radiology. 2017;284(1):228-243. doi: 10.1148/radiol.2017161659 [doi].
- 5. Molavi DM. The practice of surgical pathology: A beginner's guide to the diagnostic process. 2nd ed. Cham, Switzerland: Springer International Publishing AG; 2018.
- 6. Pelosi G, Fraggetta F, Pasini F, Maisonneuve P, Sonzogni A, Iannucci A, Terzi A, Bresaola E, Valduga F, Lupo C, Viale G. Immunoreactivity for thyroid transcription factor-1 in stage I non-small cell carcinomas of the lung. Am J. Surgh Pathol. 2001:25(3)363-72.
- 7. Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin ME, Van den Abbeele AD. Metastatic pattern of bladder cancer: Correlation with the characteristics of the primary tumor. *AJR Am J Roentgenol*. 2011;196(1):117-122. doi: 10.2214/AJR.10.5036 [doi].
- 8. Stoll LM, Johnson MW, Burroughs F, Li QK. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 cases with histologic correlation. Cancer Cytopathol. 2010;118(6):457-467.
- 9. Cantley, RL, Kapur, U, Truong, L., Cimbaluk D, Barkan GA, Wojcik E, Gattuso P. Fine-needle aspiration diagnosis of metastatic urothelial carcinoma: A review. *Diagnostic Cytopathol*. 2012; 40(2):173-178.