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10Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park,

NC 27709, USA
11Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
12Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
13Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
14Biostatistics and Computational Biology Laboratory, Department of Statistics, University of Campinas, São Paulo, 13.083-859, Brazil
15Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
16Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park,

NC 27709, USA
17Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
18Biospecimen Core Resource, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
19Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston,

MA 02115, USA
20Pathology and Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
21Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
22Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
23Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
24Scott Department of Urology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
25These authors contributed equally
26Lead Contact

*Correspondence: jweinste@mdanderson.org (J.N.W.), dk@rics.bwh.harvard.edu (D.J.K.), slerner@bcm.edu (S.P.L.)

https://doi.org/10.1016/j.cell.2017.09.007
SUMMARY

We report a comprehensive analysis of 412 muscle-
invasive bladder cancers characterized by multiple
TCGA analytical platforms. Fifty-eight genes were
significantly mutated, and the overall mutational
load was associated with APOBEC-signature muta-
genesis. Clustering by mutation signature identified
a high-mutation subset with 75% 5-year survival.
mRNA expression clustering refined prior clustering
analyses and identified a poor-survival ‘‘neuronal’’
subtype in which the majority of tumors lacked small
cell or neuroendocrine histology. Clustering by
540 Cell 171, 540–556, October 19, 2017 ª 2017 Elsevier Inc.
mRNA, long non-coding RNA (lncRNA), and miRNA
expression converged to identify subsets with differ-
ential epithelial-mesenchymal transition status, car-
cinoma in situ scores, histologic features, and sur-
vival. Our analyses identified 5 expression subtypes
that may stratify response to different treatments.
INTRODUCTION

Urothelial bladder cancer is a heterogeneous epithelial malig-

nancy that presents most commonly as an exophytic tumor

confined to the mucosa or lamina propria. However, 25% of pa-

tients have muscle-invasive (MIBC) or metastatic disease at the
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time of initial diagnosis and have a worse prognosis. We previ-

ously reported an integrated genomic analysis of 131MIBC sam-

ples (Cancer Genome Atlas Research Network, 2014a), finding

a high somatic mutation rate (median 5.5 per megabase) similar

to that of non-small cell lung cancer and melanoma (Lawrence

et al., 2013); statistically significant recurrent mutations in

32 genes, including several chromatin regulators; four expres-

sion subtypes; recurrent in-frame activating FGFR3-TACC3 fu-

sions; and potential therapeutic targets in 69% of the samples.

Here, we report a comprehensive analysis of the full TCGA

cohort of 412 MIBC cases. The expanded cohort allowed us

to identify: 32 additional significantly mutated genes, that

APOBEC-signature mutagenesis is associated with both a high

mutation rate and improved clinical outcome, an expression

subtype that we term ‘‘neuronal,’’ and multiple recurrent translo-

cations that lead to fusion genes. Clustering expression profiles

for mRNA, long noncoding RNA, and microRNA (miRNA) further

confirmed distinct subsets of MIBC with differential survival.

Demographic, Clinical, and Pathological Data
412 chemotherapy-naive, invasive, high-grade urothelial tumors

(T1 [n = 1], T2–T4a, N0–3, M0–1; Tables S1 and S2.1) from 36 tis-

sue source sites (Table S2.2) were re-reviewed by 4 expert geni-

tourinary pathologists, who classified them as pure urothelial or

mixed histology (Figure S1; Table S2.3) and assessed immune

infiltrates (Table S2.4). 52 (13%) had urothelial carcinoma with

variant histology, including 42 squamous, 4 small cell/neuroen-

docrine, 2 micropapillary, and 4 plasmacytoid. 5 additional tu-

mors thatmet screening criteria were included: 3 pure squamous

cell bladder carcinomas, 1 squamous cell carcinoma of non-

bladder origin, and 1 bladder adenocarcinoma. Complete clin-

ical data were available for 406 tumors (Table S1). 35 patients

had received prior intravesical immunotherapy with Bacille

Calmette-Guerin (BCG), and 12 had received neoadjuvant

chemotherapy (NAC) after tumor acquisition. 230 were alive,

163 had recurred, and 182 had died. The median follow-up

was 20.9 months for those alive at last follow-up. At least 122

(67%) deaths were cancer related. The samples were character-

ized by clinical data and by 6 molecular profiling platforms

(Table S2.5).

Somatic DNA Alterations
Affymetrix SNP6.0 arrays were used to assess somatic copy-

number alterations (SCNAs). GISTIC analysis identified 34

amplified and 32 deleted genomic regions (q < 0.1, Tables

S2.6–8). Many of the focal SCNAs involved genes known to be

amplified in bladder cancer, including AHR, BCL2L1, CCND1,

CCNE1, E2F3, EGFR, ERBB2, FGFR3, GATA3, KRAS, MDM2,

MYCL1, PPARG, PVRL4, SOX4, TERT, YWHAZ, and ZNF703

(Cancer Genome Atlas Research Network, 2014a). The most

common recurrent (22%) focal deletion (copy number <1) con-

tained CDKN2A (9p21.3). Recurrent focal deletions in RAD51B

(14q24.1) were not observed in the first 131 cases.

Whole-exome sequencing (WES) of 412 tumors and matched

normal samples targeted 193,094 exons in 18,862 genes (mean

coverage 853, 79% of target bases >303). MuTect identified

131,660 somatic mutations (128,772 single-nucleotide variants

[SNVs] and 2,888 indels), with high non-synonymous mutation
rates (mean 8.2 and median 5.8 per megabase [Mb]) (Figure 1A).

Most mutations were C > G transversions (27%) or C > T transi-

tions (51%). Whole genome-doubling events were found in 221

(54%) tumors (Table S1).

To identify processes contributing to the high mutation rate,

we used Bayesian non-negative matrix factorization (NMF) to

identify 5 mutation signatures (Figure S2A). APOBEC-a and

APOBEC-b were variants of the hallmark APOBEC mutagenesis

signature. A third signature, consisting of C > T transitions at

CpG dinucleotides, is likely due to 5-methylcytosine deamina-

tion. A fourth, POLE, was present in a single ultra-mutated

sample, with >4,000 SNVs and a POLE mutation (P286R).

The fifth, ERCC2, had a relatively uniform spectrum of base

changes and has been associated with ERCC2 mutations (Kim

et al., 2016).

The APOBEC-a and -b signatures accounted for 67% of all

SNVs. Results from an independent method for identifying

APOBEC-signature mutations (Roberts et al., 2013) strongly

correlated with mutation load assigned to APOBEC-a and -b

groups (Figure S2B). The total count of mutations with a stringent

APOBEC signature correlated with the remaining mutation

burden (r = 0.48, Figure S2C), suggesting that some mutations

not assigned to APOBEC-signature mutagenesis were also

APOBEC-mediated. As expected (Roberts et al., 2013), levels

of APOBEC-signature mutagenesis correlated with expression

of APOBEC3A and APOBEC3B (Figure S2D). C > T at CpG

and ERCC2 mutation signatures accounted for 20% and 8% of

total SNVs, respectively. 64% of all mutations, as well as 62%

of APOBEC-a- and 75% of APOBEC-b-signature mutations

(likelihood of signature associationR0.7; STARMethods) (Kasar

et al., 2015) were clonal (cancer cell fraction R 0.9), suggesting

that more than half of the APOBEC-signature mutation load was

likely generated early in bladder cancer development.

Unsupervised clustering of APOBEC-a and -b, ERCC2, and

C> T-at-CpGsignatures identified fourmutational signature clus-

ters, MSig1 toMSig4 (Figures 1 and S2E), which were associated

with overall survival (Figure 1B, p = 1.4 3 10�4). Patients with

MSig1 cancers (high APOBEC-signature mutagenesis and high

mutation burden) showed an exceptional 75% 5-year survival

probability. Better survival was also seen in subsets defined by

high mutation burden or high APOBEC-signature mutation load

(Figure 1B). MSig2 cancers had the lowest mutation rate and

poorest 5-year survival (22%). MSig4 cluster samples were en-

riched in both ERCC2 signature mutations (average contribution

49% versus 17% in all others, Figure 1A) and ERCC2 mutations

(24 out of 39, p = 10�13). ERCC2signaturemutationswere highest

in smokerswithERCC2mutations (p=6.9310�11); for caseswith

wild-type ERCC2, ERCC2 signature mutations were at higher

levels in smokers than in non-smokers (Figure S2F).

MutSig 2CV identified 58 significantly mutated genes (SMGs)

(q < 0.1; Tables S1 and S2.9). 34 of the 58 had not been identified

as SMGs in our earlier analysis (Cancer Genome Atlas Research

Network, 2014a); further, 16 of the 34 had not been implicated as

cancer SMGs in a recent pan-cancer analysis (Lawrence et al.,

2014) (Table S2.9). 7 of the 34 genes were mutated in >10%

of samples: KMT2C (18%), ATM (14%), FAT1 (12%), CREBBP

(12%), ERBB2 (12%), SPTAN1 (12%), and KMT2A (11%). Alter-

ations were mutually exclusive between CDKN2A and TP53,
Cell 171, 540–556, October 19, 2017 541
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Figure 1. Landscape of Mutational Signatures, Mutations, and Copy Number Alterations

(A) Alteration landscape for 412 primary tumors. Top to bottom: synonymous and non-synonymous somatic mutation rates, with one ultra-mutated sample with a

POLE signature. Mutational signature (MSig) cluster, APOBEC mutation load, and neoantigen load by quartile. Normalized activity of 4 mutational signatures.

Combined tumor stage (T1,2 versus T3,4) and node status, papillary histology, gender, and squamous histology. Somatic mutations for significantly mutated

genes (SMGs) with frequency R7%. Copy number alterations for selected genes and FGFR3 and PPARG gene fusions.

(B) Kaplan-Meier plots for overall survival (left to right): overall mutation burden (SNVs); mutation signature clusters (MSig1-4); APOBEC-mediated mutation load;

neoantigen load.

See also Figure S2.
CDKN2A and RB1, CDKN2A and E2F3, TP53 and MDM2,

FGFR3 and E2F3, and FGFR3 and RB1 (Table S2.10, q < 0.2).

Similar analyses showed co-occurrence of alterations in TP53

and RB1, TP53 and E2F3, and FGFR3 and CDKN2A (Table

S2.11, q < 0.2). FGFR3 mutations and CDKN2A focal SCNAs

co-occurred in 27 (7%) tumors (Table S1), which may be MIBCs

that have progressed from non-invasive tumors (Rebouissou

et al., 2012). 3 of 4 tumors with plasmacytoid histology had

nonsense CDH1 mutations, consistent with a previous report

(Al-Ahmadie et al., 2016).

We identified four DNA-based clusters using unsupervised

NMF clustering with SMG mutations (Mut) and focal SCNAs
542 Cell 171, 540–556, October 19, 2017
(CN) (Figures S2G and S2H). The four MutCN clusters were

characterized by: TP53 and RB1mutations, SOX4/E2F3 amplifi-

cation, mutations in chromatin-modifying genes, and FGFR3,

KDM6A, and STAG2 mutations.

Neoantigen load was strongly correlated with mutation

burden, elevated in the MSig1 cluster (p = 2.9 3 10�12), and

associated with survival (p = 5.23 10�4; Figure 1B). It was an in-

dependent predictor of outcome in addition to age, American

Joint Committee on Cancer (AJCC) tumor stage, and squamous

differentiation (p = 83 10�4; Table S2.12). Polysolver-based HLA

mutation detection identified 21 non-synonymous variants in 19

of 412 tumors (4.6%, Table S2.13). HLA mutations were more



common in MSig1 cluster (p = 0.039), suggesting that they may

have resulted from APOBEC-signature mutagenesis. HLA muta-

tions were somewhat more common in patients with prior BCG

treatment, 4 of 35 (11.4%) versus 8 of 261 (3.1%) without prior

BCG treatment (p = 0.04, chi-square test), perhaps positively

selected in response to immunological pressure.

Using RNA sequencing (RNA-seq) data, we identified 784

gene fusions (Table S2.14). The most common was an intra-

chromosomal FGFR3-TACC3 fusion (n = 10). There were 9 cases

of an intra-chromosomal translocation ITGB6-LOC100505984,

whose functional significance is uncertain. PPARG was involved

in 4 TSEN2-PPARG and 2 MKRN2-PPARG fusions, and PPARG

expression levels were higher than in samples without such

fusions (p = 6 3 10�3). Four of the six PPARG fusions led to

mRNA products for which the predicted proteins retained both

PPARG’s DNA-binding and ligand-binding domains, suggesting

that they were functional (Figure S2I). We searched for similar fu-

sions in RNA-seq data from 30 human bladder cancer cell lines

(Table S2.15). In lines 5637 and 1A6 we identified CASC15-

PPARG fusions that retained PPARG’s full DNA binding domain;

in UC9 we identified an NR2C2-PPARG fusion that retained 75%

of PPARG’s ligand-binding domain. PPARG was overexpressed

in all three of these cell lines (p < 0.05).

DNA Methylation
Unsupervised clustering using tumor-associated hypermethy-

lated CpG sites or, independently, tumor-associated hypome-

thylated sites, identified 5 major clusters that were significantly

correlated with other data types (Figures S3A and S3B). Of

particular interest was a group of tumors with high purity that

showed marked loss of DNA methylation (hypomethylation clus-

ter 4, Figures S3B and S3C). This group significantly overlapped

with the DNA hypermethylation cluster 2, which showed a low

frequency of DNA hypermethylation (p = 3.2 3 10�8, odds ratio

9.5, Figure S3D). Samples in cluster 4 showed frequent FGFR3

mutation (p = 6 3 10�9) and CDKN2A deletion (p = 4 3 10�13),

and had no TP53 or RB1mutations. Further, those tumors be-

longed to the luminal-papillary mRNA subtype, exhibited papil-

lary histology (p = 5 3 10�12), were almost all node-negative

(p = 5 3 10�12), were from younger patients (median age 61

versus 69; p < 4 3 10�3), and showed better survival (p < 0.05;

log-rank test, Figure S3E). DNA hypomethylation appeared

more widespread in low-stage, noninvasive urothelial tumors

(Wolff et al., 2010). Analysis of hypomethylated CpG sites

in this group revealed 12 genes whose hypomethylation was

significantly correlated with increased expression (Figure S3F;

Table S2.16).

Integrated analysis of DNA methylation and gene expression

identified 158 genes that were epigenetically silenced (Table

S2.17; Figure S3G). Although some of the silencing events

were probably background epigenetic noise, CDKN2A, FAT1,

and CASP8 were mutated in some tumors and (mutually exclu-

sively) epigenetically silenced in others (Figure S3H). Silenced

genes included latexin (LXN), the only known endogenous

carboxypeptidase inhibitor (silenced in 27%), Poly(ADP-ribose)

polymerase PARP6 (26%), nicotinate phosphoribosyltransfer-

ase (NAPRT) (13%), and SPATC1L (19%). In contrast, we found

no evidence for promoter DNA hypermethylation of other clas-
sical tumor suppressor genes, including TP53, PTEN, TSC1,

TSC2, NF1, NF2, and RB1.

mRNA Expression-Based Molecular Subtypes
Unbiased NMF consensus clustering of RNA-seq data (n = 408)

identified five expression subtypes (Figure 2): luminal-papillary

(n = 142, 35%), luminal-infiltrated (n = 78, 19%), luminal (n = 26,

6%), basal-squamous (n = 142, 35%), and neuronal (n = 20,

5%). The subtypes were associated with overall survival (p = 43

10�4) (Figure S4A). The analysis confirmed the two major luminal

and basal transcriptional subtypes identified by TCGA and other

groups (Choi et al., 2014b; Damrauer et al., 2014; Sjödahl et al.,

2012), while discriminating within those subtypes and identifying

luminal and neuronal subtypes (see below). The subtypes were

concordant with the four subtypes that we had reported for the

131-tumor subset of the current cohort (Cancer Genome Atlas

Research Network, 2014a) (Figure 2; Tables S2.18 and S2.19).

Most samples in the luminal subtypes showed high expression

of uroplakins (UPK2 and UPK1A) and urothelial differentiation

markers (FOXA1, GATA3, PPARG) (Figure 2). Although differ-

ences in purity appeared to contribute to their separation into

different clusters (Figure S4B), each of the three subtypes also

showed distinctive expression features with respect to wild-

type p53, epithelial-mesenchymal transition (EMT), and stromal

gene signatures (Figure S4C; STARMethods: mRNA Expression

Profiling: Gene expression signature scores).

The luminal-papillary cluster was enriched in tumors with

papillary morphology (58% versus 20% in other subtypes;

p < 10�13), lower stage (T2, 55% versus 23%; p < 10�8), and

higher purity (median 0.84 versus 0.50 in other luminal subtypes).

Several features suggest a dominant role of FGFR3 in 44%of the

luminal-papillary tumors: enrichment with FGFR3 mutations

(42/57; p < 10�9), amplification (5/5; p = 5 3 10�3), overexpres-

sion (4-fold versus median, 49/67; p < 10�11), and FGFR3-

TACC3 fusions (8/10, p = 4 3 10�3). These tumors also had

low carcinoma in situ (CIS) expression signature scores (Figures

S4C; Table S2.20; p < 1016) (Dyrskjöt et al., 2004). They retained

sonic-hedgehog signaling (SHH, Figure 2). Together, these

features suggest that many tumors in this cluster developed

from a precursor non-muscle-invasive papillary bladder cancer.

The luminal-infiltrated subtype was distinguished from other

luminal subtypes by lower purity (median 0.46 versus 0.68;

p < 10�11), consistent with the presence of lymphocytic infil-

trates, and by strong expression of smooth muscle and myofi-

broblast gene signatures (Figures 2 and S4C). 36 of 45 (80%)

of the tumors in this subtype had features similar to an expres-

sion subtype that has been associated with chemoresistance

and characterized by a wild-type p53 signature (Choi et al.,

2014b). The wild-type p53 signature score was inversely corre-

lated with tumor purity (Pearson r = �0.4; p < 0.001), suggesting

the presence of smooth muscle and fibroblast cells as a driver of

the signature. This subtype contained 23 of 24 tumors that we

had previously classified as cluster II, which was reported to

benefit most from anti-PDL1 treatment (Rosenberg et al., 2016)

and had an intermediate 5-year survival, comparable to basal-

squamous and luminal subtypes (Figure S4A). These tumors

had increased expression of several immune markers, including

CD274 (PD-L1) and PDCD1 (PD-1) (Figure 2).
Cell 171, 540–556, October 19, 2017 543



Figure 2. mRNA Expression Subtypes

Top, left to right: 5 mRNA expression subtypes: luminal-papillary, luminal-infiltrated, luminal, basal-squamous and neuronal. Covariates: 4 previously reported

TCGA subtypes; selected clinical covariates and key genetic alterations; normalized expression for miRNAs and proteins; log2 (fold change against the median

expression across samples) for selected genes, for labeled gene sets. Samples within the three luminal subtypes, the basal-squamous subtype, and the neuronal

subtype are ordered by luminal, basal, and neuroendocrine signature scores, respectively. Genes that are downregulated* versus upregulated** in CIS.

See also Figures S3, S4, and S6.
The luminal subtype had the highest expression levels of

several uroplakins (UPK1A, UPK2) and genes that are highly ex-

pressed in terminally differentiated urothelial umbrella cells

(KRT20, SNX31) (Figure 2). This suggests that these tumors

are derived from intermediate cells that have a transcriptional

program that leads to expression of markers characteristic of

normal umbrella cells.

The basal-squamous subtype was characterized by high

expression of basal and stem-like markers (CD44, KRT5,

KRT6A, KRT14) and squamous differentiation markers (TGM1,
544 Cell 171, 540–556, October 19, 2017
DSC3, PI3). The subtype included 37 of 45 tumors with squa-

mous features (p < 10�11), was enriched in TP53 mutations

(p = 5 3 10�3), and was more common in females (33% versus

21% in other subtypes; p = 0.024). Many tumors in this subtype

also showed strong expression of CIS signature genes (Figures 2

and S4A) and loss of SHH signaling (Figure 2), suggesting that

they developed from basal cells and CIS lesions. This subtype

also showed the strongest immune expression signature,

including T cell markers and inflammation genes (Figure S4C),

consistent with relatively low purity (median 0.49) (Figure S4B)



Figure 3. Somatic Alterations in Signaling Pathways across mRNA Subtypes

Somatic alterations include mutations and copy-number changes (i.e., deep deletions and high-level amplifications, from GISTIC results). Missense mutations

are counted only if they have known oncogenic function based on OncoKB (http://oncokb.org) annotations, or have previously been reported in COSMIC, or

occur at known mutational hotspots. The table shows the fraction of samples with alterations in selected signaling pathways. In the pathway diagrams, edges

show pairwise molecular interactions; boxes outlined in red denote alterations leading to pathway activation, while boxes outlined in blue denote predicted

pathway inactivation. The oncoprint at bottom illustrates type and frequency of alteration, as well as patterns of co-occurrence, for selected genes from the

pathways highlighted in the table for each expression subtype.
and the presence of lymphocytic infiltrates (p < 1 3 10�4).

Approximately 20 samples (right portion of this subtype in Fig-

ure 2) lacked expression of both basal and squamous markers

but clustered with this subtype because they lacked luminal

marker expression and had high immune gene expression.

The neuronal subtype included 3 of 4with neuroendocrine (NE)

histology (p = 53 10�3) and an additional 17 tumors that had no

histopathologic features suggestive of neuroendocrine origin. All

20 showed relatively high expression of neuronal differentiation

and development genes, as well as typical neuroendocrine

markers (Figures 2 and S4C; p < 10�4). Loss of TP53 and RB1

is a hallmark of small cell neuroendocrine cancer, and 10 of 20

(50%) samples had mutations in both TP53 and RB1, or TP53

mutation and E2F3 amplification. 17 (85%) of the 20 tumors

had alterations in genes in the p53/cell-cycle pathway. Notably,

this subtype had the poorest survival (p = 4 3 10�4, log-rank

test), consistent with the known aggressive phenotype of neuro-

endocrine bladder cancers.
As we had previously shown (Cancer Genome Atlas Research

Network, 2014a), several proteins (GATA3, EGFR, CDH1, HER2)

andmiRNAs (miR-200 s, miR-99a, miR-100) were strongly differ-

entially expressed among the mRNA subtypes (Figures 2, S4D,

S4E, and S5A; Tables S2.21 and S.22).

Altered Pathways
Many canonical signaling pathways were altered (Figure 3).

The p53/cell-cycle pathway was inactivated in 89% of tumors,

with TP53 mutations in 48%, MDM2 amplification (copy num-

ber > 4) in 6%, and MDM2 overexpression (> 2-fold above the

median) in 19%. TP53 mutations were enriched in tumors with

genome-doubling events (p < 10�7; Table S2.23), suggesting

that loss of TP53 activity facilitates genome doubling (Zack

et al., 2013).

RB1 mutations (17%) were mostly inactivating and associ-

ated with reduced mRNA levels. CDKN1A mutations (11%)

were predominantly inactivating. CDKN2A mutations (7%) and
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homozygous deletions (22%) were common, as previously

described (Williamson et al., 1995).

Alterations in DNA repair pathways included mutations in

ATM (n = 57; 14%) and ERCC2 (n = 40; 9%) and deletions in

RAD51B (n = 10; 2%). All non-silent ERCC2 mutations were

missense, and many mapped within, or within ±10 amino acids

of, the conserved helicase domain, suggesting that they impair

ERCC2 function and may have dominant negative effects (Van

Allen et al., 2014).

The FGFR3, PIK3CA, and RAS oncogenes harbored recurrent

hotspot mutations. Most FGFR3 mutations were the known

S249C or Y373C, were more frequent in lower-stage tumors

(21% in T2 versus 10% in T3,T4; p = 0.003), and were associated

with better survival (p = 0.04). PIK3CA mutations (n = 100; 22%)

were more common in the helical domain (E542 and E545; n = 54

total) than in the kinase domain (M1043, H1047; n = 10 total) and

were likely due to APOBEC mutagenic activity (Cancer Genome

Atlas Research Network, 2017; Roberts et al., 2013). ERBB2

mutations were common at S310 (S280 in the LRG_724t1

transcript) in the extracellular domain (24 of 57, 42%) and were

also likely due to APOBEC-signature mutagenesis.

Ten of the 39 SMGs with mutation frequency >5% were

in chromatin-modifying or chromatin-regulatory genes: a

histone demethylase (KDM6A), histone methyltransferases

(KMT2A, KMT2C, KMT2D), histone acetylases (CREBBP,

EP300, KANSL1), a member of the SWI/SNF chromatin remod-

eling complex (ARID1A), and Polycomb group genes (ASXL1,

ASXL2). Mutations in these genes were predominantly inactivat-

ing (50% frameshift or nonsense mutations versus 26% in other

SMGs; p = 10�30), strongly suggesting that they are functionally

relevant. ARID1A, CREBBP, and KDM6A were also targets of

genomic deletion (4.2%, 14.2%, 4.9%, respectively, Table S1).

Noncoding RNAs (lncRNAs and miRNAs) Subdivide
mRNA Expression Subtypes
Because long non-coding RNAs (lncRNAs) can be more specific

to biological state than coding RNAs (Nguyen and Carninci,

2016), we calculated transcript abundances for 8,167 (Ensembl

v.82) lncRNAs and processed transcripts. Four unsupervised

consensus clusters were associated with purity (p = 2.3 3

10�27), EMT score (p = 9.9 3 10�34), expression of CIS gene

sets (p < 1 3 10�39) (Dyrskjöt et al., 2004), and 5-year survival

(p = 0.015) (Figure 4).

The lncRNA clusters were concordant with the mRNA sub-

types (p = 2 3 10�81) and further discriminated within them. For

example, lncRNA cluster 3 (n = 76), a better-survival subset of

the luminal-papillary subtype, was depleted in TP53 mutations

but enriched in FGRF3mutations and fusions. It consisted largely

of high-purity, papillary histology, and organ-confined cancers.

Levels of many cancer-associated lncRNAs, including DANCR,

GAS5, MALAT1, NEAT1, NORAD (LINC00657), and UCA1, were

high; others, including ZNF667-AS1 (MORT) and LINC00152

(associated with lower EMT scores), were low (Figure S5B).

For miRNA mature strands, four unsupervised consensus

clusters were associated with purity (p = 53 10�33), EMT scores

(p = 5 3 10�39) (Table S2.24), and 5-year survival (p = 1.7 3

10�3) (Figure 5). They were concordant with subtypes for mRNA

(p = 2 3 10�52), lncRNA (p = 2 3 10�45), hypomethylation
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(p = 5 3 10�30), reverse phase protein array (RPPA) (p = 9 3

10�30), and with histological subtype (papillary versus non-papil-

lary), combined T-stage/Node+, node positive/negative, and CIS

genesets (Dyrskjöt et al., 2004).Many cancer-associatedmiRNAs

were differentially abundant across the subtypes (Figure S5C).

MiRNA subtype 3 was enriched in lncRNA 3 and showed the

best survival among the 4 subtypes, consistent with low EMT

scores and high miR-200 levels; CD274 (PD-L1) and PDCD1

(PD-1) levels were low. MiRNA subtypes defined subsets within

the mRNA subtypes, with miR 4 (n = 75) and miR 2 (n = 127) con-

taining most of the basal/squamous mRNA subtype samples

and showing relatively poor survival, consistent with relatively

high EMT scores.

Regulon Activity Differences among RNA Subtypes
To further characterize the molecular differences between RNA-

based subtypes, we analyzed activity profiles of 23 candidate

‘‘regulator’’ genes that that have been associated with urothelial

cancer (STAR Methods; Table S2.25). By regulator, we mean a

gene whose product induces and/or represses a target gene

set, which we refer to as a ‘‘regulon’’ (Castro et al., 2016a). We

performed the analysis for this cohort of 412 samples, and also

for an independent, mixed non-muscle invasive/MIBC cohort

(n = 308) (Sjödahl et al., 2012). In both cohorts, the inferred reg-

ulon activity profiles sorted covariates that included histology,

mRNA subtype, and EMT score (Figures S5D and S5E). Segre-

gating by activated versus repressed profiles identified sur-

vival-associated regulators with Kaplan-Meier plots and hazard

ratios that were consistent in the two cohorts (Figures S5F and

S5G). This analysis suggested that regulon analysis was robust

and biologically relevant.

We then compared regulon activity across RNA-based sub-

types, finding that activities varied most strongly for mRNA and

lncRNA subtypes, and somewhat less strongly for miRNA sub-

types (Figures 4, 5, and S5H). In luminal-papillary cases, 11 reg-

ulons were activated. lncRNA subtypes 2 and 3 (Figure 4A) were

both associated with the luminal-papillary mRNA subtype and

showed similar activation profiles for 9 regulons. Their profiles

were consistent with the hypothesis that transcription factors

GATA3, FOXA1, and PPARg drive luminal cell biology in bladder

cancer (Warrick et al., 2016). The better-survival lncRNA 3

differed from lncRNA 2 by having, among other characteristics,

an activated regulon for FGFR3 and undefined (i.e., neither acti-

vated nor repressed) regulon activity for TP63. Twelve regulons

were activated in the basal/squamous cases, which were asso-

ciatedwithmiRNA clusters 2 and 4 (Figure 5A). The TP63 regulon

was generally activated in miR 4 but repressed in miR 2, and the

EGFR regulon was largely activated in miR 4 but had variable ac-

tivity in miR 2. Overall, the analysis implicated certain regulators

as important drivers of the differences in expression phenotype

among bladder cancer subtypes.

Microbe Analysis
We used RNA-seq (n = 408), WES (n = 412), and whole-genome

sequence (n = 136) data to identify evidence of infection by hu-

man papilloma virus (HPV) (n = 11), HHV4 (n = 6), HHV5 (n = 6),

and Polyomavirus (n = 1) (Tables S3.1–3.3 and S3.7–3.8).

For HPV, we identified genomic integration in 4 tumors, with
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Figure 4. lncRNA Expression Subtypes

(A) Heatmap and covariates for four unsupervised lncRNA consensus clusters. Top to bottom: normalized abundance heatmap for 171 lncRNAs; profile of

silhouette width calculated from the consensusmembership heatmap,Wcm; covariates for clinical parameters, molecular subtypes, purity, mutations in TP53 and

FGFR3, FGFR3 and PPARG gene fusions; row-scaled mRNA levels for 3 genes; collapsed CIS gene sets (Dyrskjöt et al., 2004) (STAR Methods; CIS up,

genes upregulated in CIS; CIS down, genes downregulated in CIS); row-scaled regulon activity profiles (showing activated, undefined, or repressed status) for

23 regulators; RNA-seq-based EMT scores (Mak et al., 2016). The following p values are Bonferroni corrected: for mutated genes (for 58 SMGs), gene fusions (for

23 fusions), regulon activity (for 23 regulators), and mRNA-seq (for 12 genes).

(B) A Kaplan-Meier plot for overall 5-year survival according to lncRNA subtype.

See also Figure S5.
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Figure 5. MicroRNA Expression Subtypes

(A) Heatmap and covariates for a 4-cluster unsupervised consensus clustering solution. Top to bottom: normalized heatmap showing a subset of 142 miRNAs

that had a mean RPM R50 and an absolute value of tumor-versus-normal fold change R1.5. Profile of silhouette width calculated from the consensus mem-

bership heatmap, Wcm, with lower values indicating samples that are atypical cluster members. Covariate tracks for clinical parameters, genomic platform

subtypes, purity, mutations in TP53 and FGFR3, and FGFR3 and PPARG gene fusions. Row-scaled regulon activity profiles for 23 regulators that have been

associated with bladder cancer. Row-scaled mRNA levels for 12 genes, then for collapsed CIS gene sets (Dyrskjöt et al., 2004) (STAR Methods; CIS up, genes

(legend continued on next page)
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breakpoints associated with BCL2L1, SLC2A1-AS1, DEC1,

SEC16A, and CCDC68 (Tables S3.4–3.6 and 3.9). BK polyoma

integration breakpoints were associated with FIGN and LIMA1

genes. For HHV4 and HHV5, we found no evidence for genomic

integration. Hence, viral infection may contribute to a small per-

centage of urothelial carcinomas.

Proteomic Analysis by RPPA
Unsupervised consensus clustering of RPPA proteomic data for

208 antibodies (Table S2.26), and 343 of the 412 tumors resulted

in five robust clusters that differed in protein expression profiles,

pathway activities, and overall survival (p = 0.019) (Figures S6A

and S6B).

RPPA cluster 1 (epithelial/papillary) showed the best out-

comes, a low EMT pathway score (Figures S6C and S6D), and

enrichment with papillary samples (Table S2.27). Cluster 2

(epithelial/intermediate) was intermediate in profile and out-

comes. Elevated HER2 expression levels in clusters 1 and 2

suggest that these cases may respond to anti-HER2-directed

therapies (e.g., Herceptin, T-DM1).

Cluster 3 (proliferative/low signaling) had a high cell-cycle

pathway score, principally due to high CYCLINB1 and PCNA

expression, with low MAPK, PI3K, and mTOR pathway signaling

(Figure S6D). Although cluster 3 tumors showed low levels

of signaling, they expressed high levels of EGFR, suggesting

them as possible candidates for EGFR inhibitors.

Clusters 4 and 5 had higher EMT pathway scores (Figure S6D)

and were enriched with non-papillary and pathologic stage III

and IV tumors. Cluster 4 (EMT/hormone signaling) had the

worst outcome and relatively high reactive and hormone recep-

tor pathway scores. Cluster 5 (reactive) had high levels of

MYH11, HSP70, FIBRONECTIN, COLLAGEN VI, CAVEOLIN1,

and RICTOR, as well as remarkably low levels of the proapopto-

tic mediator BAK, perhaps contributing to the cluster’s poor out-

comes. Reactive cancer subtypes showed high levels of proteins

that are likely produced in the tumor microenvironment as

the result of interactions between cancer cells and cells in the

microenvironment, including fibroblasts, as discussed previ-

ously for reactive breast cancer subtypes (Cancer Genome Atlas

Network, 2012; Dennison et al., 2016).

Integrative Clustering Analysis
We used the Cluster of Cluster Assignments method (COCA)

(Hoadley et al., 2014) to integrate and compare the cluster as-

signments obtained by clustering mRNA, lncRNA, and miRNA

data independently. The analysis identified overlapping subtype

classifications. Although COCA subtypes were largely deter-

mined by the mRNA subtypes, lncRNA and miRNA data created

finer-grained subdivisions (Figure 6A).

Univariate and Multivariate Survival
This rich dataset enabled us to do a detailed analysis of clinical

and molecular variables for association with overall survival.
upregulated in CIS; CIS down, genes downregulated in CIS), and RNA-seq-based

for mutated genes (for 58 SMGs), gene fusions (for 23 fusions), regulon activity (

(B) A Kaplan-Meier plot for overall survival data that has been censored at 5 yea

See also Figure S5.
While follow-up times remain limited, the event rate was high

enough that results were informative.

Of 101 covariates analyzed by univariate log-rank tests,

20 had a Benjamini-Hochberg-adjusted p < 0.05 (Table S2.28).

We removed 7 with many missing cases, leaving 13 for multivar-

iate Cox regression analysis (Figure S7A). Results of nine

candidate penalized methods were approximately equivalent

(Figure S7B); we chose LASSO regression (Hutmacher and

Kowalski, 2015; Walter and Tiemeier, 2009) to fit a multivariate

model. For mRNA, lncRNA, miRNA, and MSig subtypes, we

set the best-survival subtype as the reference variable.

After filtering regression coefficients at jbj > 0.1, 7 variables

representing 4 covariates were retained (Table S2.29; Figure 6B).

A coefficient’s sign and magnitude associates a variable with

poorer or better survival rates, relative to its reference variable,

in the context of the set of regression variables retained in the

model. The variables with largest coefficients were AJCC stages

III and IV, mRNA neuronal and luminal subtypes, low mutation

rate MSig 2, and miRNA subtype 4, which is a subset of basal-

squamous cases, and KLF4 regulon activity, all of which were

associated with worse survival. The mRNA luminal-infiltrated

subtype, age, GATA3 regulon activity, and MSig4 were retained

with smaller coefficients (Figure 6B).

The fitted model assigns weights to variables and generates a

score for each sample. Thresholding these scores segregated

the cohort into predicted risk groups or strata. Tertile thresholds

generated three groups that were associated with survival

(p < 0.001) (Figure 6C; Table S2.30).

We assessed multivariate Cox regressions that included age

and AJCC stage, and subtypes for mRNA, lncRNA, miRNA, or

mutational process (MSig), setting the best-survival subtype as

the reference. Eachmolecular covariate had at least one subtype

associated with worse survival, independent of age and stage

(Figure S7C).

Subtype-Stratified Potential Treatments
In Figure 7, we have integrated results from the multiple platform

analyses and propose therapeutic considerations stratified by

expression subtyping. For each subtype, we summarize the

key drivers and propose treatment strategies that may be appro-

priate in multiple clinical scenarios, including peri-operative

therapy (neoadjuvant and adjuvant) combined with radical

cystectomy, systemic therapy combined with locoregional radi-

ation, or systemic therapy for measurable metastatic disease.

We suggest this schema as a framework for prospective hypoth-

esis testing in clinical trials, as well as for validation in ongoing

or completed clinical trials that test, or have tested, treatment

strategies.

DISCUSSION

Bladder cancer, both non-muscle invasive (NMIBC) andmuscle-

invasive (MIBC), is a major source of morbidity and mortality
EMT scores (Mak et al., 2016). The following p values are Bonferroni corrected:

for 23 regulators), and mRNA-seq (12 genes).

rs.
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Figure 6. Integrated Analysis

(A) Cluster of cluster assignments analysis

(COCA). Unsupervised clustering of subtype calls.

Subtype calls for mRNA (red), lncRNA (black), and

miRNA (blue) are colored by separate data type.

Annotations at the right of and below the heatmap

use colors for mRNA subtypes.

(B and C) Multivariate Cox analysis for overall

survival. (B) Coefficients (b) from the LASSO-

penalized multivariate Cox regression on 15 co-

variates that were significant (corrected p < 0.05) in

univariate survival calculations. Dashed blue lines

indicate jbj = 0.1; variables shown in gray text have

coefficients with jbj < 0.1. (C) Kaplan-Meier plot

predicted from the cohort, for three tertile risk

groups, at 48 months.

See also Figure S6.
worldwide. In the United States, there will be an estimated

79,000 new cases and 17,000 deaths in 2017 (Siegel et al.,

2017). NMIBC occurs mainly as papillary disease with frequent

FGFR3 mutations, whereas MIBC has a more diverse mutation

spectrum as well as copy-number instability (Balbás-Martı́nez

et al., 2013; Cappellen et al., 1999; Gui et al., 2011; Knowles

and Hurst, 2015; van Rhijn et al., 2001).

In the following, we highlight essential findings from the com-

plete cohort of 412 TCGA cases and suggest how these findings

may contribute to our understanding of therapeutic possibilities.

We identified 34 additional SMGs and 158 genes that are

subject to epigenetic silencing, both of which may offer addi-

tional potential therapeutic targets, fusion events that implicate

PPARG as a key gene in bladder cancer development, and

refined subtypes defined by considering both miRNA and

lncRNA profiling.

MIBCs show high overall mutation rates similar to those of

melanoma and non-small cell lung cancers, and we confirm

that these high rates are principally associated with mutation

signatures for an endogenousmutagenic enzyme, APOBEC cyti-

dine deaminase (Roberts et al., 2013). Most bladder cancer mu-

tations are clonal, suggesting that APOBEC’s mutagenic activity

occurs early in bladder cancer development. A better under-
550 Cell 171, 540–556, October 19, 2017
standing of the origin and regulation

of APOBEC expression and activity in

normal bladder could lead to preventive

strategies that target APOBEC as a key

mutagenic source in bladder cancer.

MSig1’s high mutation burden con-

sisted largely of APOBEC-signature mu-

tations. The subset’s unusually good

survival contributes to and correlates

with the improved survival of subjects

with higher mutational burden and higher

neo-antigen load (Figure 1B). We pro-

pose that this is due to a natural host

immune reaction to the high mutation

burden, curbing further tumor growth

and metastasis. This hypothesis should

be tested in additional bladder cancer
cohorts, and the MSig1 subset should be recognized in

ongoing clinical trials, including trial of immune checkpoint

therapy, as having a much better prognosis than average

(see further below).

Chromatin modifier gene mutations are common in bladder

cancer and also open potential therapeutic opportunities

through rebalancing acetylation and deacetylation, and through

other chromatin modifications. Recent studies have identified

BRD4-EZH2 chromatin modification as an important growth

pathway in bladder cancer, especially in tumors with loss of

KDM6A, and shown in preclinical models that the BET inhibitor

JQ1 and inhibition of EZH2 have therapeutic benefit (Ler et al.,

2017; Wu et al., 2016). Recently, a Phase 2 study of Mocetino-

stat, a histone deacetylase inhibitor, in patients with locally

advanced or metastatic urothelial carcinoma has completed

accrual and results are awaited (NCT02236195).

The altered canonical signaling pathways provide multiple

opportunities for therapeutic intervention. As one example the

p53/Rb pathway is being targeted in a multicenter phase II trial

evaluating palbociclib (PD-0332991) in patients with metastatic

urothelial carcinoma who have cyclin-dependent kinase inhibitor

2A (CDKN2A) loss and retained retinoblastoma (Rb) expression

(NCT02334527).
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*For luminal-papillary cases, the low predicted likelihood of response is based on preliminary data from Seiler et al. (2017). See Discussion.
Our mRNA expression clustering identified the well-known

luminal and basal subtypes of bladder cancer and further strati-

fied them into 5 distinct subtypes. Included are two that we did

not identify previously, neuronal and luminal, which have recently

been corroborated in an independent cohort (Sjödahl et al.,

2017). The neuronal subtype (5%) showed, in most cases, no

histopathological distinction from other types of MIBC. Nonethe-

less, it had high levels of TP53 and RB1 mutations, as do small

cell carcinomas in other tissues. It had the worst survival of the

mRNA expression subtypes, making it important to recognize

clinically. The luminal subtype had the highest expression level

of uroplakin genes and may have adopted an umbrella cell

phenotype. The luminal infiltrated subtype is similar to our previ-

ous TCGA subtype II and also similar to a subtype identified by

Choi et al. (2014b) and is characterized by a mesenchymal

expression signature. It appears to be resistant to cisplatin-

based chemotherapy and particularly sensitive to immuno-

therapy with checkpoint inhibitors.

lncRNA and miRNA expression patterns identified survival-

related subsets of cases within the mRNA luminal-papillary sub-

type and basal-squamous subtypes, respectively. Many cancer-

associated lncRNAs and miRNAs were differentially abundant

among the bladder cancer subtypes. Multivariate regression an-

alyses identified lncRNA and miRNA subtypes as independent

predictors of survival.

Our regulon analysis identified the importanceof transcriptional

driver events in bladder cancer development. In this analysis,

regulator activity was associated with survival, as described pre-

viously for breast cancer (Castro et al., 2016a).Certain regulonac-

tivity profiles varied greatly between the different coding and non-

coding gene expression subtypes, suggesting that the regulators

are key drivers of those expression subtypes. These findings pro-

vide potential targets for intervention and could be used for sub-

type discrimination and therapy selection (Castro et al., 2016a).
Integrating RNA subtype classification, pathway information,

EMT and CIS signatures, and immune infiltrate analyses leads

us to propose a model of mRNA-based expression subtypes

that may be associated with unique response to therapies and

can be prospectively tested in clinical trials (Figure 7). We note

that subsequent therapy was not included in this integrated anal-

ysis. Neoadjuvant cisplatin-based chemotherapy is the current

standard of care in cisplatin-eligible patients without risk stratifi-

cation. However, as not all patients derive benefit from chemo-

therapy, subtype-specific personalized therapies could help to

optimize global patient outcome, while preventing unnecessary

toxicity to non-responders. The following observations are hy-

pothesis-generating and thus are not ready to be used for clinical

decision making.

The luminal-papillary subtype (35%) is characterized by

FGFR3 mutations, fusions with TACC3, and/or amplification;

by papillary histology; by active sonic hedgehog signaling; and

by low CIS scores. Such cancers have low risk for progression,

and preliminary data suggest a low likelihood of response to

cisplatin-based NAC (Seiler et al., 2017). The frequency of

FGFR3 alterations in luminal papillary tumors suggests that

tyrosine kinase inhibitors of FGFR3 may be an effective

treatment approach, especially since early phase clinical

trials show benefit of pan-FGFR inhibitor agents in FGFR3-

selected advanced solid tumors (Karkera et al., 2017; Nogova

et al., 2017).

The luminal-infiltrated subtype (19%) is characterized by

the lowest purity, with high expression of EMT andmyofibroblast

markers, and of the miR-200s. It shows medium expression

of CD274 (PD-L1) and CTLA4 immune markers. This subtype,

corresponding to previous TCGA subtype II (Cancer Genome

Atlas Research Network, 2014a), has been reported to respond

to immune checkpoint therapywith atezolizumab in patients with

metastatic or unresectable bladder cancer (Rosenberg et al.,
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2016). Validation of this subtype as a predictive marker for

response to immunotherapy is ongoing in multiple clinical trials.

Tumors with a luminal-infiltrated subtype may be resistant to

cisplatin-based chemotherapy. Clinical trials may therefore be

directed to validating this subtype as a negative predictive

biomarker for chemotherapy response and for exploring alterna-

tive treatment strategies including targeted therapies.

The luminal subtype (6%) shows high expression of luminal

markers, as well as KRT20 and SNX31. Due to its novelty,

optimal therapy is not defined. Future trial designs may compare

the relative efficacy of either NAC or a therapy targeted to each

cancer’s specific mutation profile.

The basal-squamous subtype (35%) is characterized by

higher incidence in women, squamous differentiation, basal ker-

atin expression, high expression of CD274 (PD-L1) and CTLA4

immune markers, and other signs of immune infiltration. Both

cisplatin-based NAC and immune checkpoint therapy (Sharma

et al., 2016) are appropriate therapeutic options, and trials

comparing those treatments should be performed.

Finally, the neuronal subtype (5%) is characterized by

expression of both neuroendocrine and neuronal genes, as

well as a high cell-cycle signature reflective of a proliferative

state. The neuronal subtype was recently recognized by others

in an independent cohort (Sjödahl et al., 2017). Identifying this

subtype currently depends on detecting expression of neuro-

endocrine/neuronal markers by either mRNA-seq or immuno-

histochemistry, as they do not exhibit the typical morphologic

features associated with neuroendocrine tumors. Etoposide-

cisplatin therapy is recommended in neoadjuvant and meta-

static settings, as for neuroendocrine neoplasms arising in

other sites, but this should also be tested in prospective clin-

ical trials.

Our results suggest that mRNA subtype classification may be

possible with a reduced gene set, enabling validation in indepen-

dent cohorts and informing clinical trial designs that test new

personalized therapies. However, additional integrative analyses

that include assessment of lncRNAs, miRNAs, and regulon rela-

tionships can be expected to refine our subtyping of bladder

cancers and aid in the search for optimal personalized targeted

therapies.
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M. Cárcano, Rebecca Carlsen, Benilton S. Carvalho, Andre L. Carvalho, Eric

P. Castle, Mauro A.A. Castro, Patricia Castro, James W. Catto, Vinicius S.

Chagas, Andrew D. Cherniack, David W. Chesla, Caleb Choo, Eric Chuah,

Sudha Chudamani, Victoria K. Cortessis, Sandra L. Cottingham, Daniel Crain,

Erin Curley, Bogdan A. Czerniak, Siamak Daneshmand, John A. Demchok,

Noreen Dhalla, Hooman Djaladat, John Eckman, Sophie C. Egea, Jay Engel,

Ina Felau, Martin L. Ferguson, Johanna Gardner, Julie M. Gastier-Foster,

Mark Gerken, Gad Getz, Ewan A. Gibb, Carmen R. Gomez-Fernandez, Dmitry

A. Gordenin, Guangwu Guo, Donna E. Hansel, Jodi Harr, Arndt Hartmann,

Lynn M. Herbert, Toshinori Hinoue, Thai H. Ho, Katherine A. Hoadley, Robert

A. Holt, Carolyn M. Hutter, Steven J.M. Jones, Merce Jorda, Richard J. Kah-

noski, Rupa S. Kanchi, Katayoon Kasaian, Jaegil Kim, Leszek J. Klimczak, Da-

vid J. Kwiatkowski, Phillip H. Lai, Peter W. Laird, Brian R. Lane, Kristen M. Ler-

aas, Seth P. Lerner, TaraM. Lichtenberg, Jia Liu, Laxmi Lolla, Yair Lotan, Yiling

Lu, Fabiano R. Lucchesi, Yussanne Ma, Roberto D. Machado, Dennis T. Ma-

glinte, David Mallery, Marco A. Marra, Sue E. Martin, Michael Mayo, David J.

McConkey, Anoop Meraney, Matthew Meyerson, Gordon B. Mills, Alireza

Moinzadeh, Richard A. Moore, Edna M. Mora Pinero, Scott Morris, Carl Mor-

rison, Karen L. Mungall, Andrew J. Mungall, Jerome B. Myers, Rashi Naresh,

Peter H. O’Donnell, Akinyemi I. Ojesina, Dipen J. Parekh, Jeremy Parfitt, Jo-

seph D. Paulauskis, Chandra Sekhar Pedamallu, Robert J. Penny, Todd Pihl,

Sima Porten, Mario E. Quintero-Aguilo, Nilsa C. Ramirez, W. Kimryn Rathmell,

Victor E. Reuter, Kimberly Rieger-Christ, A. Gordon Robertson, Sara Sadeghi,

Charles Saller, Andrew Salner, Francisco Sanchez-Vega, George Sandusky,

Cristovam Scapulatempo-Neto, Jacqueline E. Schein, Anne K. Schuckman,

Nikolaus Schultz, Candace Shelton, Troy Shelton, Sachet A. Shukla, Jeff

Simko, Parminder Singh, Payal Sipahimalani, Norm D. Smith, Heidi J. Sofia,

Andrea Sorcini, Melissa L. Stanton, Gary D. Steinberg, Robert Stoehr, Xiaop-

ing Su, Travis Sullivan, Qiang Sun, Angela Tam, Roy Tarnuzzer, Katherine Tar-

vin, Helge Taubert, Nina Thiessen, Leigh Thorne, Kane Tse, Kelinda Tucker,

David J. Van Den Berg, Kim E. van Kessel, Sven Wach, Yunhu Wan, Zhining

Wang, John N. Weinstein, Daniel J. Weisenberger, Lisa Wise, Tina Wong, Ye

Wu, Catherine J. Wu, Liming Yang, Leigh Anne Zach, Jean C. Zenklusen, Jia-

shan (Julia) Zhang, Jiexin Zhang, Erik Zmuda, Ellen C. Zwarthoff

https://doi.org/10.1016/j.cell.2017.09.007


AUTHOR CONTRIBUTIONS

Conceptualization, S.P.L., D.J.K., A.G.R., E.A.G., M.M., D.J.M., J.N.W., H.A.,

V.E.R., and B.A.C.; Data Curation, S.P.L., D.J.K., K.A.H., E.A.G, R.A., J.Z.,

J.N.W., J.B., H.A.-A., D.E.H., K.M.L., Y.L., and T.M.L.; Formal Analysis,

D.J.K., D.A.G., L.J.K., G.G., K.A.H., A.G.R., M.A.A.C., B.d.S.C., V.S.C., S.S.,

C.C., C.S.P., A.I.O., S.B., R.A., R.S.K., T.H., P.W.L., X.S., J.Z., J.N.W., H.A.,

F.S.-V., N.S., S.A.S., C.J.W., and J.K.; Funding Acquisition, M.M., P.W.L.,

D.J.M., and J.N.W.; Investigation, S.P.L., K.A.H., G.B.M., D.J.M., H.A.,

D.E.H., B.A.C., K.M.L., and T.M.L.; Methodology, S.P.L., E.A.G., M.A.A.C.,

B.d.S.C., V.S.C., K.L.M., C.S.P., A.I.O., S.B., R.A., J.B., H.A., and J.K.; Project

Administration, S.P.L., D.J.K., P.W.L., J.N.W., and J.B.; Resources, S.P.L.,

H.A., V.E.R., and B.A.C.; Software, L.J.K., A.G.R., E.A.G, M.A.A.C., B.S.,

V.S.C., S.S., C.C., C.S.P., S.B., and J.N.W.; Supervision, S.P.L., D.J.K.,

D.A.G., A.D.C., M.A.A.C., B.d.S.C., K.L.M., M.M., R.A., G.B.M., P.W.L., and

J.N.W.; Validation, S.P.L., D.J.K., K.L.M., J.N.W., J.B., and H.A.; Visualization,

D.A.G., A.G.R., E.A.G, M.A.A.C., B.d.S.C., V.S.C., R.A., R.S.K., T.H., P.W.L.,

J.N.W., F.S.-V., and S.A.S.; Writing – Original Draft, S.P.L., D.J.K., D.A.G.,

A.D.C., A.G.R., E.A.G, M.A.A.C., K.L.M., C.S.P., R.A., R.S.K., T.H., X.S.,

J.N.W., H.A., S.A.S., and J.K.; Writing – Review/Editing, S.P.L., D.J.K.,

A.G.R., D.A.G., A.D.C, K.A.H., E.A.G, M.A.A.C, S.B., M.M., R.S.K., G.B.M.,

P.W.L., J.Z., J.N.W., J.B., H.A., and V.E.R.

ACKNOWLEDGMENTS

We are grateful to all of the patients and families who contributed to this study

and for the support of the TCGA Program Office and Steering Committee

members Neil Hayes and Paul Spellman for their detailed and thoughtful re-

view of the manuscript. We thank the peer reviewers, whose thoughtful and

detailed questions, comments, and requests very substantially improved the

manuscript. We appreciate the dedication of Ina Felau for her administrative

support throughout this project and of Lee Ann Chastain for her invaluable

organizational skills in final manuscript preparation. This project has been

funded in part with federal funds from theUSDepartment of Health and Human

Services and through the NIH, under various contracts (shown below).

The content of this publication does not necessarily reflect the views or pol-

icies of the Department of Health and Human Services, nor its member

agencies, nor does any mention of trade names, commercial products, or or-

ganizations imply endorsement by the US Government. NIH/NCI, TCGA

grant U24 CA143866 (A.G.R., K.L.M., S.S., C.C., and E.A.G.); NIH/NCI

HHSN 261201000021l, HHSN261201000032I, TCGA Project (B.A.C.); NIH/

NCI HHSN261200800001E (K.E.L. and T.M.L.); NIH/NCI U24 CA143883

(J.N.W., G.B.M., R.A., and R.K.); NIH/NCI U24 CA143867 (A.D.C. and M.M.);

NIH/NCI U24CA210950 (R.A., J.N.W., and G.B.M.), U24CA209851,

U01CA168394 (G.B.M. and Y.L.); NIH/NCI U24 CA199461 (J.N.W., B.M.B.,

and R.A.), CA210949 (J.N.W., R.A., and G.B.M.), CA210950; NIH/NCI P50

CA100632; NIH/NCI 4UL1 TR000371 (J.N.W.); NIH/NCI U24 CA143882

(P.W.L.); NIH/NCI P50 CA91846 (B.A.C., D.J.M., and X.S.); NCI CCSG P30

CA016672 (X.S.) for MD Anderson’s Sequencing and Microarray Facility;

NIH/NCI P30 CA008748 (H.A.); NIH/NCI P30 CA016672 Bioinformatics Shared

Resources (J.N.W. and R.A.); NIH Intramural Research Program Project,

Z1AES103266 (D.A.G.); NIH/NCI 1P01CA120964 (D.J.K.); NIH/NCI

R01CA178744 (B.A.C.); NIH/NCI R01CA155010 (C.J.W.); NCI PAR-16-025

(S.A.S.); and DoD Lung Cancer Development (LC150174) (J.N.W.). This work

was also partially funded by the Partnership for Bladder Cancer Research,

Scott Department of Urology, Baylor College of Medicine (S.P.L.); Leukemia

and Lymphoma Society Scholar Award (C.J.W.); Mary K. Chapman Founda-

tion (80-107216-19); Michael and Susan Dell Foundation (J.N.W.); National

Research Council (CNPq) of Brazil (M.A.A.C.); Pró-Reitoria de Pesquisa /
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD

Anderson Cancer Center

See Table S2.25

Biological Samples

Primary tumour samples and

adjacent tissue normal samples

This paper See Table S2.2 and EXPERIMENTAL MODEL AND

SUBJECT DETAILS

Critical Commercial Assays

Genome-Wide Human SNP Array 6.0 ThermoFisher Scientific Catalog: 901153

Infinium HumanMethylation450

BeadChip Kit

Illumina Catalog: WG-314-1002

EZ-96 DNA Methylation Kit Zymo Research Catalog: D5004

Illumina Barcoded Paired-End Library

Preparation Kit

Illumina https://www.illumina.com/techniques/sequencing/

ngs-library-prep.html

TruSeq RNA Library Prep Kit Illumina Catalog: RS-122-2001

TruSeq PE Cluster Generation Kit Illumina Catalog: PE-401-3001

Phusion High-Fidelity PCR Master Mix

with HF Buffer

New England Biolabs Catalog: M0531L

VECTASTAIN Elite ABC HRP Kit

(Peroxidase, Standard)

Vector Lab Catalog: PK-6100

Deposited Data

Raw and processed clinical, array and

sequence data.

Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive

Digital pathology images Genomic Data Commons

Cancer Digital Slide Archive

https://portal.gdc.cancer.gov/legacy-archive

http://cancer.digitalslidearchive.net/

RNA-Seq data for 30 human bladder

cancer cell lines

This paper GEO: GSE97768

NMIBC gene expression microarray data Sjödahl et al., 2012 GEO: GSE32894

Software and Algorithms

APOBEC Cytidine Deaminases

(P-MACD) analysis pipeline

Chan et al. 2015

Dmitry Gordenin

gordenin@niehs.nih.gov

N/A

ABSOLUTE Carter et al., 2012 http://archive.broadinstitute.org/cancer/cga/absolute

ABySS v1.3.4 Simpson et al., 2009 http://www.bcgsc.ca/platform/bioinfo/software/abyss/

Array-Pro Analyzer Media Cybernetics N/A

BWA, BWA-backtrack Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

BayesNMF Kim et al., 2016;

Tan and Févotte, 2013

N/A

BioBloomTools (BBT) Chu et al., 2014 http://www.bcgsc.ca/platform/bioinfo/software/

biobloomtools/

Birdseed Korn et al., 2008 http://archive.broadinstitute.org/mpg/birdsuite/

birdseed.html

Blastn Altschul et al. 1997 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/

blast+/LATEST/

BLAT Kent 2002 http://www.kentinformatics.com/products.html

Circular Binary Segmentation Olshen et al., 2004 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ConsensusClusterPlus Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

Cufflinks Trapnell et al., 2013 https://cole-trapnell-lab.github.io/cufflinks/

EGC.tools GitHub https://github.com/uscepigenomecenter/EGC.tools

genefilter Gentleman et al. 2016 http://bioconductor.org/packages/release/

bioc/html/genefilter.html

GenePattern Reich et al., 2006 Used by the Firehose pipeline

http://software.broadinstitute.org/cancer/

software/genepattern

GenomicFeatures Bioconductor https://bioconductor.org/packages/release/

bioc/html/GenomicFeatures.html

GISTIC Mermel et al. 2011 http://archive.broadinstitute.org/cancer/cga/gistic

GLMnet Friedman et al., 2010 https://cran.r-project.org/web/packages/glmnet

hdnom Xiao et al. 2016 https://cran.r-project.org/web/packages/hdnom

IlluminaHumanMethylation450kanno.

ilmn12.hg19 v0.6.0

Bioconductor http://www.bioconductor.org/packages/release/

data/annotation/html/IlluminaHumanMethylation

450kanno.ilmn12.hg19.html

Indellocator Ratan et al., 2015 http://archive.broadinstitute.org/cancer/cga/

indelocator

Mapsplice Wang et al. 2010 http://www.netlab.uky.edu/p/bioinfo/MapSplice/

MASS CRAN https://cran.r-project.org/web/packages/MASS/

index.html

Megablast National Center for Biotechnology

Information

https://blast.ncbi.nlm.nih.gov/Blast.cgi

methylumi Bioconductor http://bioconductor.org/packages/release/bioc/

html/methylumi.html

MOSAIK Lee et al. 2014 https://code.google.com/archive/p/mosaik-aligner/

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/cga/mutect

MutSig 2CV Lawrence et al., 2014 http://archive.broadinstitute.org/cancer/cga/mutsig

NetMHCpan-3.0 Nielsen and Andreatta, 2016 http://www.cbs.dtu.dk/services/NetMHCpan/

PathSeq Kostic et al. 2011 https://github.com/ChandraPedamallu/PathSeq

pheatmap CRAN https://cran.r-project.org/web/packages/pheatmap/

Picard Broad Institute https://broadinstitute.github.io/picard/

Polysolver Shukla et al. 2015 http://archive.broadinstitute.org/cancer/cga/polysolver

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

RTN Castro et al. 2016a http://bioconductor.org/packages/release/bioc/

html/RTN.html

samr Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/samr

Tran-ABySS Robertson et al., 2010 http://www.bcgsc.ca/platform/bioinfo/software/

trans-abyss

Samtools Li et al., 2009 http://samtools.sourceforge.net/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Strelka Saunders et al., 2012 https://sites.google.com/site/strelkasomaticvariantcaller/

SuperCurve Ju et al. 2015; Zhang et al. 2009 http://bioinformatics.mdanderson.org/Software/

supercurve/

survival CRAN https://cran.r-project.org/web/packages/survival/

index.html

Tophat Trapnell et al. 2009 https://ccb.jhu.edu/software/tophat/index.shtml

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

VirusSeq, modified version Chen et al., 2013 http://odin.mdacc.tmc.edu/�xsu1/VirusSeq.html

Ziggurat Deconstruction Mermel et al., 2011 N/A

Other

Firehose pipeline Broad Institute GDAC http://www.broadinstitute.org/cancer/cga/Firehose

GAF2.1 annotation file for RNA-Seq data TCGA Research Network https://gdc-api.nci.nih.gov/v0/data/a0bb9765-3f03-

485b-839d-7dce4a9bcfeb

OncoKB Chakravarty et al. 2017 http://oncokb.org

RNA-Seq metadata file,

V2_MapSpliceRSEM workflow

University of North Carolina https://gdc-api.nci.nih.gov/legacy/data/cf4559f9-

6beb-4bb3-ac43-c99ba6cf7f0f
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Seth P.

Lerner (slerner@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor and normal whole blood samples were obtained from patients at contributing centers with informed consent according to their

local Institutional ReviewBoards (IRBs, see below). Biospecimens were centrally processed and DNA, RNA, and protein were distrib-

uted to TCGA analysis centers. In total, 412 evaluable primary tumors with associated clinicopathologic data were assayed on at

least one molecular-profiling platform.

TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with 45-CFR-

46 (the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval

has been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
METHOD DETAILS

Biospecimen Collection; Pathological and Clinical Data
Sample inclusion criteria

Biospecimens were collected from patients diagnosed with muscle-invasive urothelial carcinoma undergoing surgical resection with

either transurethral resection or radical cystectomy. No patient had received prior chemotherapy or radiotherapy for their disease.

Prior intravesical Bacille Calmette Guerin (BCG) was allowed but not intravesical chemotherapy. Institutional review boards at

each tissue source site reviewed protocols and consent documentation and approved submission of cases to TCGA. Cases were

staged according to the American Joint Committee on Cancer (AJCC) staging system. Each frozen primary tumor specimen had

a companion normal tissue specimen. This could be blood/blood components (including DNA extracted at the tissue source site),

adjacent normal tissue taken from greater than 2 cm from the tumor, or both. Specimens were shipped overnight from 36 tissue

source sites (TSS) using a cryoport that maintained an average temperature of less than �180�C. Each tumor and adjacent normal

tissue specimen (if available) were embedded in optimal cutting temperature (OCT) medium and a histologic section was obtained for

review. Each H&E-stained case was reviewed by a board-certified pathologist to confirm that the tumor specimen was histologically

consistent with urothelial carcinoma and that the adjacent normal specimen contained no tumor cells. Divergent histologies within

the sample could not represent less than 50% of the cancer specimen. Tumor sections were required to contain an average of 60%

tumor cell nuclei with equal to or less than 20% necrosis for inclusion in the study, per TCGA protocol requirements.
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Sample Processing

RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a modification of the DNA/RNA AllPrep kit

(QIAGEN). The flow-through from the QIAGEN DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter

step generated RNA preparations that included RNA < 200 nt suitable for miRNA analysis. DNA was extracted from blood using

the QiaAmp blood midi kit (QIAGEN). Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by

PicoGreen assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments.

A custom Sequenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify tumor DNA and germline

DNA were derived from the same patient. Five hundred nanograms of each tumor and normal DNA were sent to QIAGEN for

REPLI-g whole genome amplification using a 100 mg reaction scale. Only specimens yielding a minimum of 6.9 mg of tumor DNA,

5.15 mg RNA, and 4.9 mg of germline DNA were included in this study. RNA was analyzed via the RNA6000 nano assay (Agilent)

for determination of an RNA Integrity Number (RIN), and only the cases with RIN > 7.0 were included in this study. A total of

722 bladder urothelial carcinoma cases were received by the BCR and 412 (57%) passed final quality control. Reasons for rejection

are described at https://cancergenome.nih.gov/cancersselected/biospeccriteria. Normal controls included peripheral blood

(n = 392), and/or tumor-adjacent, histologically normal-appearing bladder tissue (n = 37).

Pathology Review

All samples were subjected to central review by four urological pathologists (HAA, DEH, BAC, VER), using digitally scanned whole

slides of a representative section from a fresh frozen tumor sample submitted for molecular analysis. All samples were systematically

evaluated to confirm the histopathologic diagnosis and any variant histology according to themost recent World Health Organization

(WHO) classification (Moch et al., 2016). Additionally, all tumor samples were assessed for tumor content (% tumor nuclei), the pres-

ence and extent of tumor necrosis and the presence of invasion into muscularis propria. Tumor samples were also evaluated for the

presence and extent of inflammatory infiltrate as well as the type of the infiltrating cells in the tumor microenvironment (lymphocytes,

neutrophils, eosinophils, histiocytes, plasma cells). Any non-concordant diagnoses among the four pathologists were re-reviewed

and resolution achieved after discussion.

Clinical Data

Clinical data were submitted for all cases passing quality control. Patient information was completed immediately following the

notification of qualification, and a follow-up submission was required for all living patients one year after the case’s qualification

date; follow-up data beyond this were submitted voluntarily. For the work reported here, clinical data for all 412 cases were down-

loaded from the Genomics Data Commons Data Portal (https://portal.gdc.cancer.gov/) on May 5th, 2017. The majority of the fields

included in the dataset used for analysis were found in the patient section of the clinical XML files (e.g., nationwidechildrens.org_

clinical.TCGA-HQ-A5ND.xml). This information had been collected during the initial submission from the participating Tissue Source

Sites (TSSs). For survival analysis, the follow-up information was also considered, in order to capture each case’s longest number of

days to follow-up or death; this information changed survival information for a subset of cases reported in the previous TCGA pub-

lication (Cancer Genome Atlas Research Network, 2014a).

Copy Number Analysis
DNA from each tumor or germline sample was hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Plat-

form of the Broad Institute as previously described (McCarroll et al., 2008). Briefly, from raw .CEL files, Birdseed was used to infer a

preliminary copy-number at each probe locus (Korn et al., 2008). For each tumor, genome-wide copy number estimates were refined

using tangent normalization, in which tumor signal intensities are divided by signal intensities from the linear combination of all normal

samples that are most similar to the tumor. This linear combination of normal samples tends to match the noise profile of the tumor

better than any set of individual normal samples, thereby reducing the contribution of noise to the final copy-number profile. Individual

copy-number estimates then underwent segmentation using Circular Binary Segmentation (Olshen et al., 2004). Segmented copy

number profiles for tumor andmatched control DNAswere analyzed using Ziggurat Deconstruction, an algorithm that parsimoniously

assigns a length and amplitude to the set of inferred copy-number changes underlying each segmented copy number profile, and the

analysis of broad copy-number alterations was then conducted as previously described (Mermel et al., 2011). Significant focal copy

number alterations were identified from segmented data using GISTIC 2.0 (Mermel et al., 2011). Allelic copy number, regions of ho-

mozygous deletions, whole genome doubling and purity and ploidy estimates were calculated using the ABSOLUTE algorithm

(Carter et al., 2012).

DNA Sequencing
DNA sequencing and data processing

Exome capture was performed using Agilent SureSelect Human All Exon 50Mb according to themanufacturers’ instructions. Briefly,

0.5–3 mg of DNA from each sample were used to prepare the sequencing library through shearing of the DNA followed by ligation of

sequencing adaptors. All whole exome (WES) and whole genome (WGS) sequencing was performed on the Illumina HiSeq platform.

Paired-end sequencing (2 3 101 bp for WGS and 2 3 76 bp for WE) was carried out using HiSeq sequencing instruments; the
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resulting data was analyzed with the current Illumina pipeline. Basic alignment and sequence QC was done on the Picard and

Firehose pipelines at the Broad Institute. Sequencing data were processed using two consecutive pipelines:

Sequencing data processing pipeline (‘Picard pipeline’)

Picard (http://picard.sourceforge.net/) uses the reads and qualities produced by the Illumina software for all lanes and libraries gener-

ated for a single sample (either tumor or normal) and produces a single BAM file (http://samtools.github.io/hts-specs/SAMv1.pdf)

representing the sample. The final BAM file stores all reads and calibrated qualities along with their alignments to the genome.

Cancer genome analysis pipeline (‘Firehose pipeline’)

Firehose (https://www.broadinstitute.org/cancer/cga/Firehose) takes the BAM files for the tumor and patient matched normal sam-

ples and performs analyses including quality control, local realignment, mutation calling, small insertion and deletion identification,

rearrangement detection, coverage calculations and others as described briefly below. The pipeline represents a set of tools for

analyzingmassively parallel sequencing data for both tumor DNA samples and their patient_matched normal DNA samples. Firehose

uses GenePattern (Reich et al., 2006) as its execution engine for pipelines and modules based on input files specified by Firehose.

The pipeline contains the following steps:

Quality control

This step confirms identity of individual tumor and normal to avoid mix-ups between tumor and normal data for the same individual.

Local realignment of reads

This step realigns reads at sites that potentially harbor small insertions or deletions in either the tumor or the matched normal, to

decrease the number of false positive single nucleotide variations caused by misaligned reads.

Identification of somatic single nucleotide variations (SSNVs) –

This step detects candidate SSNVs using a statistical analysis of the bases and qualities in the tumor and normal BAMs, usingMutect

(Cibulskis et al., 2013).

Identification of somatic small insertions and deletions –

In this step putative somatic events were first identifiedwithin the tumor BAM file and then filtered out using the corresponding normal

data, using Indellocator (Ratan et al., 2015)

Mutation significance analysis
Genes with a significant excess of the number of non-synonymous mutations relative to the estimated density of background mu-

tations were identified using MutSig algorithm. MutSig has been used to identify SMGs in several previous TCGA tumor sequencing

projects and has undergone a development path starting from themost basic approach implemented inMutSig 1.0 (Getz et al., 2007)

to the current version MutSig 2CV (Lawrence et al., 2014; Lawrence et al., 2013). This study made use of MutSig 2CV to produce a

robust list of SMGs (Table S2.9).

Mutation clonality analysis
We used the ABSOLUTE algorithm (Carter et al., 2012) with copy number and mutation data to infer purity and ploidy for 400 tumor

samples, and estimated the cancer cell fraction (CCF) for each mutation. We classified mutations with CCF R 0.9 as clonal and all

other mutations as sub-clonal.

Mutation signature analysis
Mutation signature discovery involves deconvolving cancer somatic mutations, stratified by mutation contexts or biologically mean-

ingful subgroups, into a set of characteristic patterns (signatures), and inferring the contributions of signature activity across samples

(Alexandrov et al., 2013). Single nucleotide variants (SNVs) in the 412 samples were classified into 96 base substitution types, i.e., the

six base substitutions C > A, C > G, C > T, T > A, T > C, and T > G, within the tri-nucleotide sequence context that includes the bases

immediately 50 and 30 to each mutated base. Thus the input data for the mutation signature analysis is given as the mutation counts

matrix X (96 by N = 412), where each element represents an observed mutation count at the context i in the sample j. We applied a

Bayesian variant of the non-negative matrix factorization (NMF) with an exponential prior (BayesNMF) (Kim et al., 2016; Tan and

Févotte, 2013) to enable a de novo signature discovery with an optimal inference for the number of signatures (K*) best explaining

the observed X. The mutation count matrix was taken as an input for the BayesNMF and factored into two matrices, W’ (96 by K*)

and H’ (K* by N), approximating X by W’H’. All fifty independent BayesNMF runs with a different initial condition for 409 samples

converged to the solution of K* = 4, identifying four distinct mutational processes, C > T_CpG, ERCC2, APOBC-b, and APOBEC-a.

To enumerate the number of mutations associated with each mutation signature we performed a scaling transformation,

X �W’H’ = WH, W = W’U-1 and H = UH’, where U is a K* by K* diagonal matrix with the element corresponding to the 1-norm

of column vectors ofW’, resulting in the final signature matrixW and the activity matrix H. Note that the kth column vector ofW rep-

resents a normalizedmutability along 96 tri-nucleotide mutation contexts in the kth signature, and the kth row vector ofH dictates the

number of mutations associated with the kth signature across samples. TheMSig clustering analysis for 409 samples was performed

using a standard hierarchical clustering in R, with a ‘euclidian’ distance for the signature activity matrixH and a ‘ward.D’ linkage. The

number of MSig clusters was chosen by manual inspection.

Using theW and Hmatrices determined by BayesNMF we annotated each mutation with the probability (likelihood of association)

that it was generated by each of the discovered mutational signatures, pms, where ‘m’ denotes a mutation and ‘s’ refers to the
Cell 171, 540–556.e1–e15, October 19, 2017 e5

http://picard.sourceforge.net/
http://samtools.github.io/hts-specs/SAMv1.pdf
https://www.broadinstitute.org/cancer/cga/Firehose


signature. Specifically, the likelihood of association to the kth signature for a set of mutations corresponding to the i-th mutation

context and j-th sample was defined as ½wkhk=
P

k
wkhk �ij, where wk and hk correspond to the kth column vector and kth row vector

of W and H, respectively (Kasar et al., 2015).

Unsupervised clustering of mutations in SMGs and focal SCNAs
We first created a binary eventmatrix,Q (n bym), comprised of mutations in 53 SMGs and focal SCNAs in the 25 genes that hadmore

than ten SMG mutations and more than ten focal SCNAs across 408 samples. The resulting event matrix was used to compute a

consensus matrix, MK, in which the element Mij represents how often both event i and sample j clustered together, with K being

the number of clusters, by iterating conventional NMF with Frobenius norm (K * 25) times to approximateQ �WH. The cluster mem-

bership for event i and sample j was determined by the ‘‘maximum association criterion’’ as i* = max_k [wik] and j* = max_k [hkj] (k = 1

through K). Then the cumulative consensus matrix, M, was computed by summing up all MK with K increasing through 2 to 8, and

normalized by the total number of iterations, resulting in the normalizedM*. To determine the optimal number of consensus clusters,

K*, i.e., that best explain the observed M*, we applied Bayesian non-negative matrix factorization (NMF) with a half-normal prior,

finding the best approximation, M* �W*H*, where wik in W* (m by K) and hkj in H* (K by m) represents a clustering affinity or an as-

sociation of the event i and the sample j to the cluster k, respectively. Twelve out of 20 independent BayesNMF runs with different

initial conditions converged to the solution of K* = 4, while eight runs converged to the solution of K* = 5. After manual inspection we

chose the K* = 4 solution, and reported four MutCN clusters.

Quantitation of Mutagenesis by APOBEC Cytidine Deaminases
The exome-wide prevalence of the APOBEC mutagenesis signature and the enrichment of this signature over its presence expected

for randommutagenesis was evaluated with Pattern of Mutagenesis by APOBECCytidine Deaminases (P-MACD) analysis pipeline as

outlined in (Roberts et al., 2013) anddescribed in detail in Broad Institute TCGAGenomeData Analysis Center (2016): Analysis ofmuta-

genesis by APOBEC cytidine deaminases (P-MACD). Broad Institute of MIT andHarvard (https://doi.org/10.7908/C1CC1013). Briefly,

analysis is based on previous findings that APOBECs deaminate cytidines predominantly in a tCw motif and that the APOBEC muta-

genesis signature is composedof approximately equal numbersof twokindsof changes in thismotif – tCw/Gand tCw/Tmutations

(flanking nucleotides shown in small letters; w = A or T).We calculated on a per sample basis, the enrichment of the APOBECmutation

signature amongallmutatedcytosines in comparison to the fractionof cytosines that occur in the tCwmotif among the± 20nucleotides

surroundingeachmutatedcytosine (‘‘APOBEC_enrich’’ column indata files). In addition, several other parameters that characterize the

prevalence of the APOBEC mutagenesis pattern in a sample and/or that are useful for downstream analyses and comparisons. The

main parameter used in this paper was the minimum estimate of the number of APOBEC inducedmutations in a sample - ‘‘APOBEC_

MutLoad_MinEstimate.’’ Itwascalculatedusing the formula: [‘‘tCw/G+tCw/T’’]x[(‘‘APOBEC_enrich’’-1)/‘‘APOBEC_enrich’’],which

allows estimating the number of APOBEC signature mutations in excess of what would be expected by random mutagenesis. For

example, if statistically significant enrichment in a sample would be = 2, the minimum estimate of APOBEC-induced mutations would

be 50%of total number of APOBEC-signature mutations ([‘‘tCw/G+tCw/T’’]). Calculated values are rounded to the nearest whole

number. ‘‘APOBEC_MutLoad_MinEstimate’’ is calculated only for samples with passing 0.05 FDR threshold for APOBEC enrichment

([‘‘BH_Fisher_p-value_tCw’’] = < 0.05. Samples with ‘‘BH_Fisher_p-value_tCw’’ value greater than 0.05 receive a value of 0. For some

analyses and figures ‘‘APOBEC_MutLoad_MinEstimate’’ parameter was converted into categorical values as follows:

d ‘‘no’’: ‘‘APOBEC_MutLoad_MinEstimate’’ = 0

d ‘‘low’’: 0 < ’’APOBEC_MutLoad_MinEstimate’’ % median of non-zero values in the set of 412 BLCA samples

d ‘‘high’’: ‘‘APOBEC_MutLoad_MinEstimate’’ > median of non-zero values in the set of 412 BLCA samples (median of non-zero

values in the set of 412 BLCA samples = 61.5).
Class I HLA mutation and neoantigen analysis
Class I HLA typing and mutation detection

HLA typing and detection ofmutations in class I HLA genes (HLA-A/B/C) was performed using Polysolver (Shukla et al., 2015). Briefly,

the HLA typing algorithm employs a Bayesian model that first estimates the prior probabilities of different alleles based on the

ethnicity of the individual. These probabilities are then updatedwith amodel that takes into account the base qualities and alignments

of putative HLA-derived reads against the reference HLA allele database. The alleles for each of the three HLA genes are inferred

based on the computed scores in a two-stage process. These inferred HLA alleles serve as the reference for the HLAmutation detec-

tion step. Putative HLA reads from the tumor and the germline sample are extracted and aligned to the inferred allele sequences,

followed by mutation and insertion/deletion identification with the Mutect (Cibulskis et al., 2013) and Strelka (Saunders et al.,

2012) tools respectively.

We used a Chi-square test to assess whether HLA mutations were more common in patients with prior BCG treatment.

Neoantigen prediction

For each patient, we first enumerated a list of all possible 9 and 10-mer peptides bearing somatic mutations, or overlapping open

reading frame derived from frameshifting indels or nonstop mutations. These peptides were then evaluated for binding against
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the patient’s inferred HLA type using the NetMHCpan-3.0 algorithm (Nielsen and Andreatta, 2016). The neoantigen load was defined

as the total number of predicted peptide:allele binders with rank percentile score less than or equal to theweak binder threshold (2%).

Univariate survival analysis of neoantigen load was evaluated using the Kaplan-Meier method. The effect of neoantigen load in the

context of other variables was assessed using the Cox proportional hazards model. The comparison of number of HLA mutations or

number of predicted binders between groups (e.g., MSig1 versus MSig2-4 clusters) was performed with two-sided t tests.

DNA methylation and epigenetic silencing
Assay platform

We used the Illumina Infinium HumanMethylation450 (HM450) DNA methylation platform (Bibikova et al., 2011; Bibikova et al., 2009)

to obtain DNA methylation profiles of 412 tumor samples and 21 tumor-adjacent, histologically normal-appearing bladder tissue

samples. The HM450 assay analyzes the DNA methylation status of up to 482,421 CpG and 3,091 non-CpG (CpH) sites throughout

the genome. It covers 99% of RefSeq genes with multiple probes per gene and 96% of CpG islands from the UCSC database and

their flanking regions. The assay probe sequences and information for each interrogated CpG site on Infinium DNA methylation

platform are available from Illumina (https://www.illumina.com/).

The DNA methylation score for each assayed CpG or CpH site is represented as a beta (b) value (b = (M/(M+U)) in which M and U

indicate the mean methylated and unmethylated signal intensities for each assayed CpG or CpH, respectively. g values range from

zero to one, with scores of ‘‘0’’ indicating no DNAmethylation and scores of ‘‘1’’ indicating complete DNAmethylation. An empirically

derived detection p value accompanies each data point and compares the signal intensity with an empirical distribution of signal

intensities derived from a set of negative control probes on the array. Any data point with a corresponding p value greater than

0.05 is deemed to not be statistically significantly different frombackground and is thusmasked as ‘‘NA’’ in the Level 3 data packages

as described below. Further details on the Illumina Infinium DNA methylation assay technology have been described previously

(Bibikova et al., 2011; Bibikova et al., 2009).

Sample and data processing

We performed bisulfite conversion of 1mg of genomic DNA from each sample using the EZ-96 DNAMethylation Kit (Zymo Research,

Irvine, CA) according to the manufacturer’s instructions. We assessed the amount of bisulfite-converted DNA and completeness of

bisulfite conversion using a panel of MethyLight-based quality control (QC) reactions as previously described (Campan et al., 2009).

All the TCGA samples passed our QC tests and entered the Infinium DNAmethylation assay pipeline. Bisulfite-converted DNAs were

whole-genome-amplified (WGA) and enzymatically fragmented prior to hybridization to BeadChip arrays as per the Infinium protocol.

BeadArrays were scanned using the Illumina iScan technology to produce IDAT files. Raw IDAT files for each sample were processed

with the R/Bioconductor package methylumi. TCGA DNA methylation data packages were then generated using the EGC.tools

R package which was developed internally and is publicly available on GitHub (https://github.com/uscepigenomecenter/EGC.tools).

TCGA Data Packages

The data levels and the files contained in each data level package are described below and are present on the NCI Genomic Data

Commons (https://gdc.cancer.gov).

Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and as mapped by the Sample and Data

Relationship Format (SDRF). These IDAT files were directly processed by the R/Bioconductor package methylumi. We provided a

disease-mapping file (BLCA.mappings.csv) in the AUX directory to facilitate this process. Level 2 data contain background-corrected

methylated (M) and unmethylated (U) summary intensities as extracted by the R/Bioconductor package methylumi. Detection

p values were computed as the minimum of the two values (one per methylation state measurement) for the empirical cumulative

density function of the negative control probes in the appropriate color channel. Background correction was performed via

normal-exponential deconvolution (Triche et al., 2013). Multiple-batch archives had the intensities in each of the two channels

multiplicatively scaled to match a reference sample. The reference sample is defined in each array as the sample having R/G ratio

of the normalization control probes closest to 1.0. Level 3 data contain b value calculations with annotations for HGNC gene symbol,

chromosome, and genomic coordinates (UCSC hg19, Feb 2009) for each targeted CpG/CpH site on the array. Probes having a

common SNP (dbSNP build 135, Minor Allele Frequency > 1%) within 10 bp of the interrogated CpG site or having an overlap

with a repetitive element (as detected by RepeatMasker and Tandem Repeat Finder based on UCSC hg19, Feb 2009) within

15 bp (from the interrogated CpG site) were masked as ‘‘NA’’ across all samples, and probes with a detection p value greater

than 0.05 in a given sample were masked as ‘‘NA’’ on that array. Probes that were mapped to multiple sites in the human genome

(UCSC hg19, Feb 2009) were annotated as ‘‘NA’’ for chromosome and 0 for the CpG/CpH coordinate.

We used Level 3 DNA methylation data for the analyses described in this manuscript.

Unsupervised clustering analysis of DNA methylation data

We removed probes which had any ‘‘NA’’-masked data points and probes that were designed for sequences on X or Y chromosomes

or non-CpG sites.

To capture cancer-specific DNA hypermethylation events, we first selected CpG sites that were not methylated in normal tissues

(mean b value < 0.2). To minimize the influence of variable tumor purity levels on a clustering result, we dichotomized the data using a

b value ofR 0.3 to define positive DNAmethylation and < 0.3 to specify lack ofmethylation. The dichotomization not only ameliorated

the effect of tumor sample purity on the clustering, but also removed a great portion of residual batch/platform effects that are

mostly reflected in small variations near the two ends of the range of b values. We also removed CpG sites that were methylated
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in leukocytes, a major source of contamination present in a tumor sample (mean b-value > 0.2). We then performed consensus

clustering with the dichotomized data on 31,249 CpG sites that were methylated in at least 5% of the tumor samples. The optimal

number of clusters was assessed based on 80%probe and tumor resampling over 1,000 iterations of hierarchical clustering for K = 2,

3, 4.20 using the binary distance metric for clustering and Ward’s method for linkage as implemented in the R/Bioconductor

ConsensusClusterPlus package.

Similarly, in order to investigate subgroups based on cancer-specific DNA hypomethylation, we identified CpG sites that were

highly methylated in normal tissues (mean b value > 0.8). We dichotomized the data using a b value of < 0.7 as a threshold for

loss of DNA methylation. We then performed consensus clustering with the dichotomized data on 53,862 CpG sites that showed

hypomethylation in at least 10% of the tumors.

Heatmaps were generated to assess clustering results based on the original b values for a subset of the most variably methylated

CpG sites across the tumors. The probes were displayed based on the order of unsupervised hierarchal clustering of the b values

using the Euclidean distance metric and Ward’s linkage method. Covariate association p values were calculated with Chi-

square tests.

Identification of epigenetically silenced genes

We first removed DNA methylation probes overlapping with SNPs, repeats or designed for sequences on X or Y chromosomes or

non-CpG sites. The remaining probes were mapped against UCSC Genes using the GenomicFeatures R/Bioconductor package.

Probes unmethylated in normal tissues (mean b value < 0.2) and located in a promoter region (defined as the 3 kb region spanning

from 1,500 bp upstream to 1,500 bp downstream of the transcription start site) were identified. mRNA expression data were log2

transformed [log2(RSEM+1)] and used to assess the gene expression levels associated with DNAmethylation changes. DNAmethyl-

ation and gene expression data were merged by Entrez Gene IDs.

Wedichotomized the DNAmethylation data using a b value of > 0.3 as a threshold for positive DNAmethylation and eliminated CpG

sites methylated in fewer than 3% of the tumor samples. For each probe/gene pair, we applied the following algorithm: 1) classify the

tumors as either methylated (bR 0.3) or unmethylated (b < 0.3); 2) compute themean expression in themethylated and unmethylated

groups; 3) compute the standard deviation of the expression in the unmethylated group.We then selected probes for which themean

expression in themethylated groupwas less than 1.64 standard deviations from themean expression of the unmethylated group.We

labeled each individual tumor sample as epigenetically silenced for a specific probe/gene pair if: a) it belonged to the methylated

group and b) the expression of the corresponding gene was lower than the mean of the unmethylated group of samples. If there

were multiple probes associated with the same gene, a sample that was identified as epigenetically silenced at more than half the

probes for the corresponding gene was also labeled as epigenetically silenced at the gene level. For each gene, we evaluated result-

ing silencing call based scatterplot of DNA methylation versus expression and a heatmap.

We manually examined the list of genes that were significantly mutated. We identified additional genes having evidence for epige-

netic silencing at low frequencies. CDKN2A DNA methylation status was assessed based on the probe (cg13601799) located in the

p16INK4 promoter CpG island. p16INK4 expression was determined by the log2(RPKM+1) level of its first exon (chr9:21974403-

21975038).

The complete list of 158 genes identified as epigenetically silenced is provided in Table S2.17.

Genes upregulated in hypomethylated subtype 4

We used four types of data: 1) b values for 5386 probes for 412 primary tumor samples and 21 adjacent normal samples, 2) RSEM

gene-level expression data for 408 primary tumors and 19 adjacent normals, and 3) clinical and molecular data for 412 tumor sam-

ples, and 4) pathology review of micrograph images for the adjacent normals, which indicated that we should remove BT-A20U-11,

BT-A2LB-11, GD-A2C5-11, and GD-A3OP-11.

Of the 408 tumor samples with RSEM data, 36 were in hypomethylation subtype 4 (‘subtype 4’), and 372 in the other hypomethy-

lation subtypes.

We identified 10368 genes had a mean RSEM abundance of at least 1.0 in each of the tumor groups (subtype 4 versus other), and

an absolute value fold change of at least 1.25 between the two groups. 1863 genes were differentially abundant between the two

groups (Benjamini-Hochberg (BH)-corrected p < 0.01, Wilcoxon test), and 436 of the 1863 genes were more abundant in subtype 4,

with a fold change of at least 1.5.

We identified 2646 of the 5386 methylation probes that had a fold change more negative than �1.5 between subtype 4 and other

samples, i.e., had lower b values in subtype 4. These had BH-corrected Wilcoxon p values < 0.003, and �1/FC ranging from �5.6

to �1.5.

Using the ‘annotations’ from the IlluminaHumanMethylation450kanno.ilmn12.hg19 v0.6.0 R package, we associated 1784 of the

2646 probe IDs with one or more gene symbols. Of these, 681 records had gene symbols that were semicolon-separated lists, e.g.,

SIRPG;SIRPG;SIRPG, or NCRNA00175;NCRNA00175;COL18A1. We collapsed such lists into unique symbols, and arbitrarily took

the last of these symbols, even when the list contained more than one symbol. This associated each probe ID with one RefSeq gene

symbol. Because some symbols have more than one associated probe, the 1784 gene symbols contained 1240 unique symbols.

187 unique RefSeq gene symbols were present in both a) the differentially abundant RSEM genes and b) genes associated with

differential probes. For each probe-associated gene we retained only the probe with the most significant BH-corrected p value,

accepting all annotated relationships of a probe to a CpG island (i.e., Island, N_Shelf, N_Shore, S_Shelf, S_Shore, or OpenSea).
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From the 187 RefSeq genes, we identified 39 for which, in hypomethylation subtype 4, the RSEM gene abundance was higher, and

the beta value for the associated DNA methylation probe was lower. We then inspected scatterplots of beta versus RSEM abun-

dance, which included the 14 adjacent normals that were present in both DNA methylation and RSEM datasets, and had passed

pathology review. We identified a subset of 12 genes for which DNA hypomethylation in subtype 4 may have resulted in higher

RSEM abundance in that subtype.

Statistics

Statistical analysis and data visualization were carried out using the R/Biocoductor software packages (www.bioconductor.org).

mRNA Expression Profiling
mRNA sequencing and expression quantification

RNAwas extracted, prepared into mRNA libraries, and sequenced by Illumina HiSeq resulting in paired 50nt reads, and subjected to

quality control as previously described (Cancer Genome Atlas Network, 2012). RNA reads were aligned to the hg19 genome assem-

bly using Mapsplice (Wang et al., 2010), and RNA fusion events were automatically detected by MapSplice as previously described.

Gene expression was quantified for the transcript models corresponding to the TCGA GAF2.1 (https://gdc-api.nci.nih.gov/v0/data/

a0bb9765-3f03-485b-839d-7dce4a9bcfeb), using RSEM (Li and Dewey, 2011) and normalized within-sample to a fixed upper quar-

tile. For further details on this processing, refer to GDC Description file under the V2_MapSpliceRSEM workflow (https://gdc-api.nci.

nih.gov/legacy/data/cf4559f9-6beb-4bb3-ac43-c99ba6cf7f0f). Data for genes were median-centered across samples for down-

stream analysis.

Unsupervised mRNA expression clustering

For unsupervised clustering analysis the log2(RSEM) gene expression data for N = 408 samples was pre-processed to determine the

most highly expressed and variable 3,347 genes across samples.We removed genes with NA valuesmore than 10%across samples

and then selected top 25%most-varying genes by standard deviation of gene expression across samples. The resulting expression

matrix R (3347 by 408) was further transformed to the matrix R* of fold changes centered at the median expression. The expression

clustering analysis was done by combining BayesNMF (Tan and Févotte, 2013) with a consensus hierarchical clustering approach, as

follows. Using the distance matrix of 1 - C, the element Cij representing the Spearman correlation between the sample i and j across

3347 genes in R*, we first compute a consensus matrix, MK, the element Mij representing how often both samples i and j clustered

together, and K being the number of clusters, by iterating a standard hierarchical clustering (K * 500) times with the average linkage

option and 80% resampling in sample space. Then the cumulative consensus matrix,M, was computed by summing up allMK with

K increasing through 2 to 10, and normalized by the total number of iterations, resulting in the normalized M*. To determine the

optimal number of clusters, K*, i.e., that best explain the observed M*, we applied Bayesian non-negative matrix factorization

(NMF) with a half-normal prior, finding the best approximation, M* �HT H, where hkj in H (K* by N) represents a clustering affinity

or an association of the sample j to the cluster k andHT is a transpose ofH. Nine out of 20 independent BayesNMF runs with different

initial conditions converged to the solution of K* = 5, while 11 runs converged to the solution of K* = 4. After manual inspection we

chose the K* = 5 solution, giving rise to the five mRNA expression subtypes: luminal, luminal-infiltrated, basal-squamous, neuronal,

and luminal-papillary. We noted that both luminal and luminal-infiltrated clusters merged together to form a single cluster in the K* = 4

solution, indicating that expression patterns in these two clusters were relatively more similar than any other subtypes. The cluster

membership for sample j was determined by the ‘‘maximum association criterion’’ as k* = max_k [hkj] (k = 1 through K*). The concor-

dance of the derived expression subtypes was examined in the comparison to those in TCGA marker paper (Cancer Genome Atlas

Research Network, 2014a) and other various subtype classifications for 234 TCGA samples (Aine et al., 2015) (Table S2.19).

We selected subtype-specific marker genes in Figure 2 by performing an additional non-negative matrix factorization to the log2(-

RSEM) gene expression data Xwith the fixed K* andH* (a column-wise normalization of H) to determine the optimalW (18197 by K*)

as X �WH*. Note that the element wik in W represents an inferred contribution of the cluster k to the expression of the gene i, i.e.,

measures an affinity or association of the gene i to the cluster k. The clustering membership of the gene i was determined by the

maximum association criterion as k* = max_k [wkj] (k = 1 through K*). We considered the top 1% genes in descending order of

wik, with dik R 2.75, where dik refers to the mean expression difference in log2(RSEM) between samples in the cluster k and other

samples.

Gene expression signature scores

The raw gene expression signature score in Figure S4 was defined as a mean of log2(RSEM) for the basal markers (CD44, CDH3,

KRT1, KRT14, KRT16, KRT5, KRT6A, KRT6B, KRT6C), luminal markers (CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3,

GPX2, KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, UPK1A, UPK2), p53-like markers (ACTG2, CNN1, MYH11, MFAP4,

PGM5, FLNC, ACTC1, DES, PCP4), squamous-differentiation markers (DSC1, DSC2, DSC3, DSG1, DSG2, DSG3, S100A7,

S100A8), neuroendocrine markers (CHGA, CHGB, SCG2, ENO2, SYP, NCAM1), CIS (carcinoma-in situ) markers (Dyrskjöt et al.,

2004), cell-cycle genes (Cuzick et al., 2011), cancer-stem cell markers (CD44, KRT5, RPSA, ALDH1A1I) (Chan et al., 2010), a set

of markers known to be associated with EMT (epithelial-mesenchymal; ZEB1, ZEB2, VIM, SNAIL, TWIST1, FOXC2, CDH2), clau-

din-low markers (CLDN3, CLDN7, CLDN4, CDH1, VIM, SNAI2, TWIST1, ZEB1, ZEB2), and CIT (Cartes d’Identité des Tumeurs)

gene sets (Biton et al., 2014). CIT sets included tumor cell component 9; stromal components 3, 8, and 12; and components

5 and 14, which could not be attributed to either tumor or stromal cells. The basal, luminal, p53-like, and claudin-low markers

were adapted from (Dadhania et al., 2016), and the squamous, neuroendocrine, and EMT markers were manually chosen based
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on prior knowledge and literatures. To highlight a differential activity of each signature the raw gene expression signature scores were

rank-normalized in Figure 4C. The CIS signature score was defined as a mean difference of log2(RSEM) between upregulated and

downregulated genes (Dyrskjöt et al., 2004).

miRNAs and RPPAs that were differentially abundant across mRNA subtypes

The 1212miRNAmature strandswere reduced to 303 expressed strands by requiring ameanRPMof at least 10 across n = 405 tumor

samples. A SAM (samr v2.0) multiclass analysis was run using 1000 permutations, no array centering, aWilcoxon test statistic, and an

FDR output threshold of 0.05. The same settings were used for RPPA normalized abundance data for 195 antibodies and 344 primary

tumors.

Detecting somatic gene fusions
Amodified version of VirusSeq (Chen et al., 2013) that implements a greedy algorithmwith a robust statistical model was used in gene

fusion discovery for RNA-Seq data. Specifically, MOSAIK aligner (Lee et al., 2014) was used to align paired-end reads to human

genome reference (hg19). A given paired-end read alignment was then quantified in terms of the genomic location (L) of the aligned

read pair, the distance (D) between the aligned read pair of the fragment (insert), and the orientation (O) of the read pair. The specific

pattern in (L, D, O) spacewas used as a constraint to define the discordant read pair. For example, a discordant read pair may have an

exceptionally long D spanning a region in the reference genome. All discordant reads were then annotated using the genes defined in

UCSC refFlat file, and clustered into the ones that support the same fusion event (e.g., FGFR3–TACC3). Finally, each fusion candidate

was defined and selected as the discordant read clusters in which a statistical model-based algorithm with greedy strategy was im-

plemented to accurately detect the boundaries of discordant read clusters and in silico fusion junctions. Here, in silico fusion junction

is the nucleotide-level genomic coordinate on either side of the gene fusion and is not necessary to be at the ends of known exons.

Specifically, the boundary for each discordant read cluster of candidate fusion was estimated on the basis of discordant read map-

ping locations and orientations with fragment length distribution (e.g., within mean plus three SDs, m+3*s) as a constraint of cluster

size. The cluster size of discordant reads was measured by using reads’ genomic location excluding introns if mapped reads are

located across adjacent exons in a candidate fusion gene. Finally, to help PCR primer design, which facilitates rapid PCR validations,

an in silico sequence was generated using the consensus of reads within discordant read clusters for each fusion candidate.

Bladder cancer cell lines

Thirty human bladder cancer cell lines were obtained from the MD Anderson (MDA) Bladder SPORE Tissue Bank. Cell line identities

were validated by the MDA Characterized Cell Line Core, using DNA fingerprinting with AmpFlSTR Identifiler Amplification (Applied

Biosystems, Foster City, CA). Cell lines were cultured in MEM supplemented with 10% fetal bovine serum, vitamins, sodium pyru-

vate, L-glutamine, penicillin, streptomycin, and nonessential amino acids at 37�C in 5%CO2 incubator. Total RNAwas isolated using

a mirVana miRNA isolation kit (ThermoFisher Scientific, Waltham MA). RNA-Seq data was generated with a TruSeq Stranded Total

RNA Library Prep Kit, and 76-bp PE reads on an Illumina HiSeq 2500.

Integrative pathway analysis
We evaluated somatic mutations and copy number changes at the gene level, within the context of well-studied signaling pathways.

Pathway alteration frequencies were based on the following genes:

TP53/Cell Cycle pathway: ATM, TP53, MDM2, CDKN2A, RB1, CCND1, CDKN1A, PTEN, CCNE1, FBXW7, CDKN1B, CCND1/2/3,

and CDK4/6

RTK/RAS/PI3K pathway: PIK3CA, FGFR1/3, ERBB2/3, RAF1, PTEN, TSC1/2, EGFR, AKT1/2, NF1, RAC1, H/N/KRAS, JAK1/2,

and BRAF

Histone modification pathway: EP300, CREBBP, KMT2C/D, KDM6A, BAP1, ASXL1/2 and SETD2

SWI/SNF pathway: ARID1A, ARID1B and ARID2

DNA Damage pathway: ERCC2, BRIP1, ATM, BRCA1/2, RAD21/50 and CHEK1

Cohesin complex pathway: STAG1/2, RAD21 and SMC1A/3 (Losada, 2014)

Oxidative stress pathway: NFE2L2, KEAP1, CUL3 and TXNIP

Alternative splicing pathway: RMB10, SF3B1, U2AF1 and CDK12.

Oncogenic relevance was assessed using OncoKB, a knowledgebase for the oncogenic effects of cancer genes that is manually

curated by researchers and physicians at Memorial Sloan Kettering (Chakravarty et al., 2017). More precisely, a mutation is counted

and included in the diagrams if (1) it has been reported 4 or more times in COSMIC (Forbes et al., 2011), or (2) it has been labeled as

oncogenic, or likely oncogenic, in OncoKB.

Amplifications and deep deletions are based onGISTIC calls and indicate somatic alterations inmore than half of the baseline gene

copies. They are counted and included in the diagrams only if they are labeled as oncogenic, or likely oncogenic, in OncoKB. The

actual list of oncogenic and likely oncogenic alterations is regularly updated based on the literature; the most recent version can

be retrieved online from the OncoKB public website (http://oncokb.org/) or visualized when viewing the data in the cBioPortal

(www.cbioportal.org). For known oncogenes, we considered only genetic alterations inferred to be activating; for genes with tumor

suppressive roles, only alterations inferred to be inactivating were considered.
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Non-coding RNA (lncRNA and miRNA) Sequencing and Analysis
Mapping RNA-seq reads for lncRNAs

RNA sequence reads were aligned to the human reference genome (hg38) and transcriptome (Ensembl v82, September 2015) using

STAR 2.4.2a (Dobin et al., 2013). STAR was run with the following parameters: minimum / maximum intron sizes were set to 30 and

500,000, respectively; noncanonical, unannotated junctions were removed; maximum tolerated mismatches was set to 10; and the

outSAMstrandField intronmotif option was enabled. The Cuffquant command included with Cufflinks 2.2.1 (Trapnell et al., 2013) was

used to quantify the read abundances per sample, with fragment bias correction and multiread correction enabled, and all other op-

tions set to default. To calculate normalized abundance as fragments per kilobase of exon per million fragments mapped (FPKM), the

cuffnorm command was used with default parameters. From the FPKM matrix for the 80 tumor samples, we extracted 8167 genes

with ‘‘lincRNA’’ and ‘‘processed_transcript’’ Ensembl biotypes.

miRNA sequencing

We generatedmiRNA sequencing (miRNA-seq) data frommessenger RNA-depleted RNA (Chu et al., 2016). Briefly, we aligned reads

to the GRCh37/hg19 reference human genome, assigned read count abundances tomiRBase v16 stem-loops and 5p and 3pmature

strands, and assigned miRBase v20 mature strand names to MIMAT accession IDs. Note that while we used only reads with exact-

match alignments in calculating miRNA abundances, BAM files available from the Genomics Data Commons (https://gdc.cancer.

gov/) include all sequence reads.

Unsupervised clustering for lncRNAs, miRNAs

We extracted lncRNAs that were robustly expressed (mean FPKM R 1) and highly variable across the n = 80 tumor cohort (R95th

FPKMvariance percentile) from thematrix of 8167 lncRNAs (above), and identified groups of samples with similar abundance profiles

by unsupervised consensus clustering with ConsensusClusterPlus (CCP) 1.20.0 (Wilkerson and Hayes, 2010). Calculations were

performed using Spearman correlations, partitioning around medoids (PAM) and 10,000 iterations. From solutions with 2, 3, 4 and

5 clusters we selected a four-cluster solution after assessing consensus membership heatmaps and dendrograms, CCP clustering

metrics, Kaplan-Meier (KM) plots, and clustering results from other platforms. To visualize typical versus atypical cluster members,

we calculated a profile of silhouette widths (Wcm) calculated from the consensus membership matrix. To generate an abundance

heatmapwe identified lncRNAs that had amean FPKMR 5 and a SAMmulticlass (samr 2.0) (Li and Tibshirani, 2013) q% 0.01 across

the unsupervised clusters (see differential abundance, below), transformed each row of the matrix by log10(FPKM + 1), then used the

pheatmap R package (v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and Ward clustering.

FormiRNAmature strand data we used a similar approach. The input was a reads-per-million (RPM) datamatrix for the 303 (25%of

1212) most-variant 5p or 3pmature strands, which we transformed by applying log10(RPM+1), then median-centering eachmiRNA’s

record. Using Pearson distances, PAM, and 5000 iterations with a 0.85 random fraction of miRNAs in each iteration, we assessed

solutions with between two and eight clusters. After assessing information as for lncRNAs, we focused on a four-cluster solution.

As for lncRNAs, to generate a clustering heatmap we first identified miRNAs that were differentially abundant between the unsuper-

vised miRNA clusters using a SAM multiclass analysis (samr 2.0) (Li and Tibshirani, 2013) in R, with a read-count input matrix and a

FDR threshold of 0.05. We included miRNAs that had the largest SAM scores and median abundances > 25 RPM. The RPM filtering

acknowledged that miRNAs that are more abundant are more likely to be influential (Mullokandov et al., 2012; Thomson and Dinger,

2016). We transformed each row of the matrix by log10(RPM+1), then used the pheatmap R package (v0.7.7 or v1.0.2) to scale and

cluster only the rows.

Carcinoma in situ (CIS) signature genes

We used RSEM gene-level data and the pheatmap R package with row scaling to generate heatmaps of normalized expression for

32 ‘up’ and 36 ‘down’ carcinoma in situ (CIS) signature gene sets (Dyrskjöt et al., 2004). ‘Up’ genes were (genes are given as

in the RSEM file: HGNC symbol j Entrez gene ID): AKR1B10j57016, CALD1j800, CDH11j1009, CLIC4j25932, COL15A1j1306,
COL3A1j1281, CXCR4j7852, DCNj1634, DPYSL2j1808, EFEMP1j2202, FLNAj2316, HLA-DQA1j3117, HLA-DQB1j3119,
HOXA9j3205, ITM2Aj9452, KPNA2j3838, KYNUj8942, LHFPj10186, LUMj4060, LYZj4069, MAN1C1j57134, MSNj4478,
NR3C1j2908, PDGFCj56034, PRG1j23574, RARRES1j5918, S100A8j6279, SGCEj8910, SPARCj6678, TOP2Aj7153, TUBBj203068,
and UAP1j6675. ‘Down’ genes were: ACSBG1j23205, ANXA10j11199, BBC3j27113, BCAMj4059, BMP7j655, BST2j684, CA12j771,
CLCA4j22802, CRTAC1j55118, CTSEj1510, CYP2J2j1573, EEF1A2j1917, ENTPD3j956, FABP4j2167, FGFR3j2261, GRB7j2886,
HBG1j3047, HOXA1j3198, HOXB2j3212, INAj9118, ITGB4j3691, IVLj3713, KCNQ1j3784, LAD1j3898, LAMB3j3914, LTBP3j4054,
MAPRE3j22924, MST1Rj4486, PADI3j51702, PLA2G2Aj5320, SOX15j6665, TMPRSS4j56649, TNNI2j7136, TRIM29j23650,
UPK2j7379, UPK3Bj80761.
To generate compact ‘collapsed’ covariate expression tracks for the ‘up’ and ‘down’ CIS signature gene sets, we calculated Bon-

ferroni-corrected Kruskal-Wallis p values for RSEM gene expression across lncRNA, miRNA and regulon status clusters. For each of

the three clustering solutions, for the two gene sets, we used these p values to select a subset of strongly differentially expressed

genes. We calculated a profile of the median RSEM expression for each gene subset, across the cluster-ordered cases, and

used pheatmap to generate a row-scaled normalized expression track for the median profile. P value-selected gene sets were as

follows. For the lncRNA clusters, we used the 21 of 32 ‘up’ genes and 18 of 36 ‘down’ genes that passed a threshold of a Bonfer-

roni-corrected Kruskal p % 1E-15. For the miRNA clusters, we used the 20 ‘up’ genes that passed a Kruskal p % 1E-15 threshold,

and the 11 ‘down’ genes that passed Kruskal p % 1E-10.
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Covariates associated with unsupervised clusters

We compared unsupervised clusters to clinical and molecular covariates by calculating contingency table association p values

using R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

Pathology review of adjacent tissue normal samples

After pathology review, four of the 19 adjacent tissue cases were removed from the expression data for lncRNAs and miRNAs: BT-

A20U, BT-A2LB, GD-A2C5, and GD-A3OP.

EMT scores from RNA-seq data

The samples were scored based on expression of EMT signature genes (Mak et al., 2016). Briefly, the EMT score for each sample is

calculated as themean expression of epithelial markers subtracted from themean expression of mesenchymal markers. Higher EMT

scores correlate with a more mesenchymal expression pattern.

Regulon analysis
Candidate regulators

We inferred the relative activity of 23 candidate ‘regulator’ genes that had previously been reported as associated with bladder can-

cer: the steroid hormone receptors ESR1/2, AR and PGR; the nuclear receptors PPARG, three RARs (A/B/G), and three RXRs

(A/B/G); the receptor tyrosine kinases ERBB2/3 and FGFR1/3; and the transcription factors FOXA1, FOXM1, GATA3/6, HIF1A,

KLF4 and STAT3 and TP63 (Breyer et al., 2016; Choi et al., 2014a; Dadhania et al., 2016; DeGraff et al., 2013; Eriksson et al.,

2015; Godoy et al., 2016; Jones et al., 2016; Kardos et al., 2016; Lim et al., 2016). By ‘regulator’ we mean a gene whose product

induces and/or represses a target gene set, which we call a ‘regulon’ (Castro et al., 2016a).

Reconstruction of RTN regulons

The BLCA regulator-target associations are inferred using the R package RTN (Castro et al., 2016b), which is extensively described

elsewhere for reconstructing regulatory units for transcriptions factors and upstream regulators (Campbell et al., 2016; Castro et al.,

2016a; Fletcher et al., 2013). Briefly, gene expression matrices for a set of samples are used to estimate the associations between a

regulator and all potential targets. We use two metrics to identify potential regulator-target associations: Mutual Information (MI) and

Spearman’s correlation. MI-based inference indicates whether a given regulator is informative of the status of a given target gene,

while Spearman’s correlation indicates the direction of the inferred associations. Associations with less than aminimumMI threshold

are eliminated by permutation analysis (BH-adjusted p value < 1e-5), and unstable interactions are additionally removed by boot-

strapping (n = 1000 resamples, consensus bootstrap > 95%), to create a regulatory network.RTN regulons are additionally evaluated

by the Data Processing Inequality (DPI) algorithm with tolerance = 0.01 (Margolin et al., 2006). Note that MI-based inference com-

putes regulons irrespective of positive or negative associations, and Spearman’s correlation is then used only to assign direction

to the predicted regulons. As an optional step, we assessed the stability of the main observations by filtering regulons using the Bio-

conductor package genefilter v1.56.0 (Gentleman et al., 2016). Feature selection was performed using the coxfilter function on the

Sjodahl 2012 cohort (see below) and used to filter genes in the TCGA cohort. Since overfiltering discards both false and true null hy-

potheses, we also look at the fraction of filtered genes and the total number of observations (i.e. overall results should be stable irre-

spective of the fractions removed). The list of positively and negatively associated genes in each regulon is provided in Table S2.25.

Regulon activity estimated by two-tailed GSEA

The two-tailed gene set enrichment analysis (GSEA) is described elsewhere (Castro et al., 2016a). Briefly, this approach assesses the

skewness of two distributions of a selected gene set in a list of genes that is ranked by a particular phenotype, as follows. The gene

set represented for a given regulon is split into positive (A) and negative (B) targets using Spearman’s correlation, and the phenotype

corresponds to the gene-wise differential expression observed when comparing a given tumor with the average expression of all tu-

mors in the cohort. The distribution of A and B is then tested by the GSEA statistics in the ranked phenotype, producing independent

per-sample enrichment scores (ES), and then differential enrichment scores (dES), which are obtained by subtracting the enrichment

score for positive targets (ESA) from that obtained for negative targets (ESB). A large positive dES indicates an induced regulon status

while a large negative dES indicates the opposite case. Differential enrichment score values that are near zero (with ESA and ESB

distributions skewed to the same side) are assigned as inconclusive. The two-tailed GSEA was performed in R using the function

tni.gsea2 in the RTN package (Castro et al., 2016a).

Regulon activity as readout of clinical and molecular variables

For each case in a cohort we assign an enrichment score (dES) using the two-tailed GSEA approach described above. Then, ordering

the cohort’s cases by dES, we can assess how a given regulon is associated with clinical and molecular variables. The cohort cases

are also stratified by positive versus negative dES values, and the stratified cases are used to plot Kaplan-Meier survival curves, with

p values calculated using log-rank statistics (Castro et al., 2016a). The survival analysis is performed in R using the functions coxph,

survfit and survdiff.

Independent BLCA cohort and transcriptome data

Data used to assess survival statistics in BLCA from an independent cohort are obtained from a large-scale microarray study for

n = 308 BLCA cases (Sjödahl et al., 2012), which we downloaded from GEO (accession number GSE32894). We use the gene

sets in the regulons that we infer from TCGA data to assess the Sjodahl cohort. For each regulon’s gene set, the regulon activity

is initially estimated for all tumors of the Sjodahl cohort with the two-tailed GSEA approach, and then the regulon activity is used

as readout of clinical and molecular variables, as described above.
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Microbial analysis
Microbial screening and genomic integration (British Columbia Cancer Agency)

Microbe analysis consists of two stages: read screening and genomic integration. In the first stage we classify read sequences using

a pipeline based on BBT (Release 1.2.10), a fast Bloom filter-based method (Chu et al., 2014). For 48-bp PE RNaseq data, we pro-

cessed data for 408 tumor samples and 19 tissue normal samples; for 76-bp PEWES data we processed 412 tumor samples and 429

blood or tissue normals; and for 51-bp PE WGS data (high and low pass) we processed 136 tumor samples and 145 blood or tissue

normal samples. We ran BBT with a sliding window size (i.e., k-mer length) of 25 bp and a false discovery rate of 0.02. We generated

43 filters from ‘complete’ NCBI genome reference sequences for microbial species that included bacteria, viruses, fungi and proto-

zoa. In a single-pass scan, BBT categorizes each read as matching a filter for human or a single specific microbe, as matching two or

more species (multi-match), or as matching none of the filters (no-match). For each filter, we calculated a reads-per-million (RPM)

abundance metric (below) and applied a threshold of 0.2 RPM (Cancer Genome Atlas Research Network, 2014b) to identify samples

as being positive for specific microbes. For HPV-positive samples, we identified HPV strains with a second BBT run that uses strain-

specific filters.

RPM=

�
reads mapped to the microbe

reads mapped to human
� 106

�

In the second stage of analysis we assessedwhether viruses had integrated into the human genome, working only with datasets for

which BBT results for HPV, HHV4 or HHV5were above or close to the 0.2 RPM screening threshold, andwith BK-Polyomavirus in DK-

A3IT. We performed de novo assembly (Robertson et al., 2010) with ABySS v1.3.4 (Simpson et al., 2009) on each library, using every

fourth k-mer value from k = 24 to 48 for RNA-seq data, every fourth k-mer from k = 52 to 96 for WES data, and k = 24, 36 and 48 for

WGS data. For HPV analysis we assembled only the reads that BBT had classified as human, HPV match, multi-match, and no-

match. We used a similar approach for the HHV4 and HHV5 assemblies. For each library, we merged the contig sets for all k-mer

assemblies with Trans-ABySS v1.4.8 to generate a working contig set. We reran BBT on each of these contig sets, applying only

human and either HPV or herpes virus filters, identifying the contigs that matched to only a viral filter, or to both the human filter

and a viral filter. For HPV-only contigs we confirmed the strain by using BLAT v34 to align each contig to 48HPV reference sequences.

For chimeric multi-match contigs we confirmed the HPV strain, and, for HPV, HHV4 and HHV5, identified integration breakpoints by

using BLAT v34 (Kent, 2002) to align each contig to the human GRCh37/hg19 reference sequence, and to 110 HHV4, 22 HHV5, or 48

HPV reference sequences.We retained contig alignments in which the aligned human and viral sequences summed to at least 90%of

the contig length, and the human and viral aligned overlapped by less than 50%. We annotated human breakpoint coordinates

against RefSeq and UCSC gene annotations (downloaded from the UCSC genome browser on 30-Jun-2013) (Kuhn et al., 2013).

Breakpoints that had supporting evidence consisting of at least 3 spanning mate-pair reads or 5 flanking mate-pair reads were

considered potential integration sites.

Microbial detection from RNaseq data by PathSeq (The Broad Institute)
PathSeq Microbial Detection

The PathSeq algorithm (Kostic et al., 2011) (https://github.com/ChandraPedamallu/PathSeq) was used to perform computational

subtraction of human reads, followed by alignment of residual reads to a combined database of human reference genomes and mi-

crobial reference genomes (which includes but is not limited to Human Papillomaviruses (HPV’s), BK Polyomaviruses (BK), Human

Herpesviruses (HHV’s)), resulting in the identification of reads mapping to HPV, BK, and HHV genomes in RNA sequencing data.

In brief, for PathSeq human reads were subtracted by first mapping reads to a database of human genomes using BWA (version

0.6.1) (Li and Durbin, 2009), Megablast (version 2.2.23), and Blastn (version 2.2.23) (Altschul et al., 1997). Only sequences with perfect

or near perfect matches to the human genome were removed in the subtraction process. To identify HPV / HBK / HHV reads, the

resultant non-human reads were aligned with Megablast to a database of microbial genomes that includes multiple HPV, BK and

HHV reference genomes. HPV, BK and HHV reference genomes were obtained from the NCBI nucleotide database (downloaded

in June 2012).

Subjects were classified as HPV by RNA sequencing if at least 1 HPV read in 1 million human reads were present; otherwise, sub-

jects were classified as HPV-negative. In addition, subjects were classified as BK-positive by RNA sequencing if at least 1 BK reads in

1 million human reads were present; otherwise, subjects were classified as BK-negative. Similar thresholds are used for Human

Herpesviruses.

Identification of Human papillomavirus and BK Polyomavirus integration events

An HPV-positive sample was considered integration positive if there were at least 5 spanning read pairs or 10 flanking reads support-

ing an integration event. In case of HPV-positive, flanking read pairs were defined as having one end of the paired-end read mapped

to the HPV genome and its mate pair mapped to the human genome. Spanning reads were defined as having one end of the paired

end read spanning the integration junction and its mate pair mapped to either the human or HPV genome. Once HPV reads were

obtained, we extracted all pair mates and used Tophat-2.0.84 (Trapnell et al., 2009) with the fusion option enabled to map these

paired end reads to a combined database containing the human genome and an HPV genome. Next, spanning reads and flanking

reads are identified from the aligned BAM file.
Cell 171, 540–556.e1–e15, October 19, 2017 e13

https://github.com/ChandraPedamallu/PathSeq


Human genes involved in the integration are identified using the breakpoint coordinates against RefSeq and UCSC gene annota-

tions (last modified on 30-Jun-2013) from the UCSC genome browser (Kuhn et al., 2013). A similar approach is followed for identi-

fication of BK Polyomavirus integration from RNaseq data.

RPPA protein expression profiling
RPPA experiments and data processing

RPPA lysis buffer was used to extract protein from human tumors and RPPAwas performed as described previously (Hennessy et al.,

2007; Hu et al., 2007; Liang et al., 2007; Tibes et al., 2006). Frozen tumors were lysed by Precellys homogenization, adjusted to

1 mg/mL concentration as assessed by bicinchoninic acid assay (BCA), boiled with 1% SDS, and manually serial diluted in two-

fold of 5 dilutions with lysis buffer. Details on slide preparation, analysis and quantification of spot intensities to generate spot signal

intensities (level 1 data), SuperCurve-based QCmetric to filter slides with highest QC for each antibody (level 2 data) (Hu et al., 2007),

loading control across antibodies for protein measurements (level 3 data) (Gonzalez-Angulo et al., 2011; Hu et al., 2007), and final

selection of antibodies for specificity and sensitivity (Hennessy et al., 2010) are given in (Cancer Genome Atlas Research Network,

2014a). In total, 215 antibodies and 343 muscle invasive urothelial/bladder carcinoma (BLCA) samples were used in the analysis,

including 109 papillary and 224 non-papillary samples. Forty-two of these 343 samples were squamous cell carcinomas that

were mostly non-papillary (40 non-papillary and 2 papillary) samples. RPPA raw data (level 1), SuperCurve nonparameteric model

fitting on a single array (level 2), and loading corrected data (level 3) (Ju et al., 2015; Zhang et al., 2009) were deposited at the DCC.

Data normalization

Median centering was performed across all the antibodies for each sample to correct for sample loading differences. These differ-

ences could arise because protein concentrations are not uniformly distributed per unit volume of lysate due to several factors such

as differences in protein concentrations of large and small cells, differences in the amount of proteins per cell, or heterogeneity of the

cells comprising the samples. The expression levels acrossmany different proteins in a sample could be used to estimate differences

in the total amount of protein in that sample versus other samples. Further, subtracting themedian protein expression level forces the

median value to become zero, allowing for a comparison of protein expressions across samples. These median-centered data were

used for the analysis of BLCA samples.

Surprisingly, processing similar sets of samples on different slides of the same antibody may result in datasets that have very

different means and variances. Neely et al. (Neeley et al., 2009) processed clinically similar ALL samples in two batches and observed

differences in their protein data distributions. There were additive andmultiplicative effects in the data that could not be accounted by

biological or sample loading differences. We observed similar effects when we compared the two batches of bladder tumor protein

expression data. A new algorithm, replicates-based normalization (RBN), was therefore developed using replicate samples run

across multiple batches to adjust the data for batch effects. The underlying hypothesis is that any observed variation between rep-

licates in different batches is primarily due to linear batch effects plus a component due to random noise. Given a sufficiently large

number of replicates, the random noise is expected to cancel out (mean = zero by definition). Remaining differences are treated as

systematic batch effects. We can compute those effects for each antibody and subtract them out. Many samples were run in both

batches. One batch was arbitrarily designated the ‘‘anchor’’ batch and was to remain unchanged. We then computed themeans and

standard deviations of the common samples in the anchor batch, as well as the other batch. The difference between the means of

each antibody in the two batches and the ratio of the standard deviations provided an estimate of the systematic effects between the

batches for that antibody (both location-wise and scale-wise). To cancel out those systematic differences, each data point in the non-

anchor batch was adjusted by subtracting the difference in means, then multiplying by the inverse ratio of the standard deviations.

Our normalization procedure significantly reduced technical effects, thereby allowing us to merge the datasets from different

batches.

RPPA clusters and pathway scores

BLCA samples (n = 343), including 109 papillary and 224 non-papillary samples, were clustered based on 208 antibodies by

consensus clustering using the partitioning around medoids algorithm and a Euclidean dissimilarity measure (Wilkerson and Hayes,

2010). The role of cell signaling networks in urothelial carcinomas was illustrated by computing twelve pathway scores similar to

those described previously (Akbani et al., 2014).

Kaplan-Meier curves for overall survival

P values are based on the G-rho family of Harrington and Fleming (Xu and Harrington, 2001) tests to evaluate the difference between

two or more survival curves.

Carcimoma-in situ (CIS) gene sets

Carcimoma-in situ (CIS) gene sets were from (Dyrskjöt et al., 2004).

Univariate and Multivariate Survival Analysis
Data preparation and univariate survival analysis

As described in Table S2.28, we recoded values of certain covariates (columns E versus F), then excluded from the analysis cova-

riates that had many missing values (column C), including CLIN_ajcc_nodes_pathologic_pn and CLIN_ajcc_tumor_pathologic_pt, or

that were highly unbalanced between two categories (i.e., one category contained < 5% of the cases) (column H). We removed

PATH.NOS and PATH_squamous covariates, retaining PATH_Short.Path, because the information in the first two was close to
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what the latter offered. After excluding all copy number covariates for technical reasons, we had retained 101 covariates. For univar-

iate calculations we used the survdiff function from the R survival v2.40-1 package, and adjusted the log-rank p values with a

Benjamini-Hochberg (BH) correction. The univariate analysis identified 18 covariates that were statistically associated with overall

survival (BH-adjusted p value < 0.05).

LASSO and Cox regression analysis

As input covariates we used 13 of the 18 that the univariate calculations returned as significant, rejecting five because they had rela-

tively large numbers of missing values: CLIN_Node_positive_vs_negative (47 cases missing), CLIN_Combined_Tx_Node_positive

(64), CLIN_ajcc_nodes_pathologic_pn (47), CLIN_T12_vs_T34 (39), CLIN_ajcc_tumor_pathologic_pt (43). We tested nine types of

penalized estimation methods: lasso, adaptive lasso, fused lasso, elastic-net, adaptive elastic-net, SCAD, Snet, MCP, and Mnet as-

sessing the performance of each approach with time-dependent ROC curves (tAUC) (Xiao et al., 2016). When no fitting strategy was

significantly better, we choose to use LASSO to fit the final model.

We performed the multivariate Cox regression analysis in R (R Core Development Team, 2016), assuming additive effects. For

MSig, mRNA, lncRNA and miRNA subtypes we set, as a reference, a subtype with the best survival (Table S2.29). All LASSOmodels

were fit using the glmnet v2.0-5 and hdnom v4.6 packages (cv.glmnet and hdcox.lasso functions) (Friedman et al., 2010; Xiao et al.,

2016). For comparison, we also used a stepwise selection algorithm for model selection (stepAIC function in the R MASS package);

stepwise model selection, while widely used, has poor predictive performance compared to modern approaches like LASSO penal-

ized regression (Hutmacher and Kowalski, 2015; Walter and Tiemeier, 2009). We selected the LASSO-penalized Cox model that

resulted in minimal prediction error, using Leave-One-Out Cross-Validation (LOOCV), and assessed the stability of the results by

bootstrap analysis (n = 1000 times).

We determined risk groups from the LASSOmodel, as follows. The set of regression coefficients is equivalent to a predictivemodel

that is a sum of terms, each of which is a covariate’s coefficient multiplied by the value of that covariate for a case. The cohort is split

into training and validation sets in the k-fold cross-validation. The final model is used to estimate a survival probability for each case,

at a chosen end-point (e.g., 48 months). The risk groups are then determined from the predicted probabilities; Figure 6C shows low-,

medium- and high-risk tertiles. This process, calledmodel calibration, is used to assess how far themodel predictions are from actual

survival outcomes. For the work reported here, the predictions were made on the samples that were used to build the model; when

new cases that have data for the model’s covariates are available, predictions can be made on them using the same approach.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above according to their respective technologies and analytic approaches.

DATA AND SOFTWARE AVAILABILITY

The data and analysis results are available and can be explored through the Genomic Data Commons (https://gdc.cancer.gov), the

Broad Institute GDAC FireBrowse portal (http://gdac.broadinstitute.org), the Memorial Sloan Kettering Cancer Center cBioPortal

(http://www.cbioportal.org), and the TCGA publication page (https://tcga-data.nci.nih.gov/docs/publications/). The accession num-
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Figure S1. Representative Micrographs of Analyzed Tumors, Related to the Demographic, Clinical, and Pathological Data Section of STAR

Methods

(A–D) Urothelial carcinoma, not otherwise specified and (E-H) urothelial carcinoma with variant histology.

(A) An example of high tumor content with minimal stromal component. The scale bar is 700 mm.

(B) An example of moderate tumor content with stromal and immune cell components. The scale bar is 500 mm.

(C) An example of highly infiltrating tumor with relatively low tumor content, high stromal component and brisk immune cell infiltrate. The scale bar is 200 mm.

(D) Urothelial carcinoma, NOS with evidence of tumor necrosis (*). The scale bar is 300 mm.

(E) Urothelial carcinoma with squamous differentiation with evidence of keratin formation (k). The scale bar is 200 mm.

(F) Another example of urothelial carcinoma with squamous differentiation with evidence intercellular bridges (arrows). The scale bar is 100 mm.

(G) Urothelial carcinoma, micropapillary variant. Characteristically, multiple small clusters of tumor cells are present in clear ‘‘lacunar’’ spaces. The scale bar

is 300 mm.

(H) Small cell/neuroendocrine carcinoma of the bladder. Primitive appearing tumor cells with scant cytoplasm and nuclear molding. The scale bar is 200 mm.



(legend on next page)



Figure S2. Somatic DNA Mutational Signatures and Rearrangements, Related to Figure 1

(A) Above: Mutational signatures. The spectrum of total SNVs and four mutational signatures in 96 base substitution contexts (mutated pyrimidines and adjacent

50 and 30 bases). Note that because the dynamic range for the signatures is large, y axis upper limits are different for each signature. Below: signature activities.

The number of mutations assigned to each mutational process (Counts) and the normalized contributions across samples. Analysis involved 409 of 412 tumors.

We excluded one sample that had a clear POLE signature, and samples that had only 1 and 3 SNVs.

(B and C) Comparison of APOBECmutation loads inferred using Bayesian NMF, with those obtained using a knowledge-based, experimentally defined Pattern of

Mutagenesis by APOBEC Cytidine Deaminases (P-MACD).

(B) Correlation of mutation load assigned to APOBEC mutagenesis by Bayesian NMF (y axis) and APOBEC mutation load determined by P-MACD (x axis).

P-MACD-defined mutation load is shown with pseudo count of 0.1 to visualize zero values.

(C) Number of mutations with stringent APOBEC signature (tCw to tTw, or tCw to tGw; x axis) correlates strongly with the number of mutations not conforming to

stringent APOBEC signature. DK-A6AW is the outlier ultra-mutated POLE mutant sample.

(D) APOBEC expression versus levels of APOBEC-signature mutagenesis. Levels of APOBEC-signature mutagenesis were determined for each tumor sample

usingmotif-based analysis (methods: Pattern ofMutagenesis by APOBECCytidine Deaminases, P-MACD), andwere grouped into No, Low, andHigh categories.

The level of expression of 8 different APOBEC family members are shown as log2(RSEM). mRNA levels of APOBEC3A and APOBEC3B were statistically

associated with increased levels of APOBEC-signature mutagenesis. P values are from a Kruskal-Wallis test and were Bonferroni-corrected for multiple testing.

APOBEC1 and APOBEC4 are not included because their expression levels were not detectable in most samples.

(E) Unsupervised hierarchical clustering of 409 samples (MSig clusters) based on the number of mutations assigned to four mutational processes.

(F) SNVs, ERCC2 signature mutations, and smoking status, for n = 409 tumor samples (see [A]). Left: Association of overall mutation burden (SNVs) versus

smoking status. Middle: Association of ERCC2 signature mutations versus smoking status. Right: Association of ERCC2 signature mutations versus combined

status of smoking and ERCC2 mutations. P values are from a Wilcoxon rank-sum test.

(G and H) Mutation/focal Copy Number MutCN clusters based on SMG mutations and focal SCNAs. (G) Unsupervised Bayesian NMF clustering of mutations in

SMGs and focal copy number events (see STAR Methods) identified four DNA-based clusters with differential enrichments of characteristic genetic alterations.

Genetic alterations in 53 SMG mutations and 25 focal SCNAs (labels on the left) across 408 samples are indicated by pale blue on a dark blue background.

(H) Normalized strength of association of 78 genetic alterations to the four MutCN clusters.

(I) Protein domain architectures for PPARG fusions. In each of the five schematic fusion diagrams, the left part indicates the 50 gene, and the right part indicates the

location of the fusion breakpoint relative to two PPARG protein domains Top to bottom: MKRN2-PPARG retains both DNA-binding (ZnF C4) and ligand-binding

(HOLI) domains; TSEN2-PPARG retains full ZnF_C4 and HOLI domains; TSEN2-PPARG retains partial ZnF_C4 and a full HOLI domain; TSEN2-PPARG retains

only a full HOLI domain; TSEN2-PPARG retains only a partial HOLI domain.



Figure S3. DNA Methylation Subtypes and Genes Inactivated by DNA Methylation or by Multiple Mechanisms, Related to Figure 2

(A andB) Unsupervised clustering usingCpG sites that are cancer-specifically hypermethylated (A) or hypomethylated (B). Shown are heatmap representations of

DNA methylation profiles of CpG sites with most-variable DNA methylation values (rows) in the 421 tumor samples (columns). Clusters derived by consensus

clustering, and selected molecular and clinical features are depicted above each heatmap; heatmaps for DNAmethylation profiles of 21 normal-adjacent tissues

are to the left and of two leukocyte samples are to the right. For subtypes from other platforms, only those that were statistically associated with the DNA

(legend continued on next page)



methylation subtypes are shown. CpG sites that are located within gene promoter (PR) or gene body (GB) regions are indicated by the horizontal black bars on the

right-hand side of the clustered heatmaps.

(C) Distribution of ABSOLUTE purity across the DNA hypomethylation subtypes.

(D) Concordance between hypermethylation subtypes (rows) and hypomethylation subtypes (columns), shown as a heatmap of odds ratios. A large odds ratio

indicates that the sample membership in two clusters is strongly concordant. White versus red represents low versus high odds ratios.

(E) Kaplan–Meier analysis comparing patient survival for the five DNA hypomethylation-based clusters.

(F) Twelve genes for which DNA hypomethylation in subtype 4 may contribute to RSEM abundance being higher in that subtype. Relationship of beta to RSEM

abundance. Dot colors indicate hypomethylation subtypes, with smaller versus larger dots reflecting lower/ higher ABSOLUTE purity (range 0.09 to 1.0). Squares

indicate 14 adjacent tissue normals.

(G) Epigenetically-silenced genes in bladder cancer. Scatterplots showing negative relationships between DNA methylation (x axis) and gene expression (y axis)

for genes frequently epigenetically silenced in bladder cancer. Each dot represents a tumor sample. Shown are eight genes with biological or clinical interest, as

described in the text.

(H) Genes inactivated by multiple mechanisms in bladder cancer. Shown are three SMGs that are both deleted and epigenetically silenced. For each gene, the

scatterplot on the left shows the relationship between DNA methylation (x axis) and gene expression (y axis). The plot on the right displays mutually exclusive

occurrence of mutation, deletion, and epigenetic silencing, with the frequency of each alteration shown on the right. Individual tumors are represented by dots

that are color-coded by the type of alteration as indicated on the plots.
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Figure S4. mRNA Expression Analysis, Related to Figure 2

(A) Kaplan-Meier plot for overall survival across the fivemRNA expression subtypes, censored at 5 years, with a log-rank p value. LP: luminal-papillary, LI: luminal-

infiltrated, L: luminal, BS: basal-squamous, N: neuronal.

(B) Distributions of ABSOLUTE purity estimates for the mRNA subtypes.

(C) Gene expression signature scores for genes sets. For members and literature sources for gene sets, see STAR Methods: mRNA Expression Profiling: Gene

expression signature scores. Top: Basal, luminal, wild-type p53, squamous-differentiation, and neuroendocrine. Second from top: Carcinoma-in situ, cell-cycle,

cancer-stem cell markers, genes associated with EMT (epithelial-mesenchymal transition), and claudin-low markers. Third from top: CIT (Cartes d’Identité des

Tumeurs) gene sets, including tumor cell component 9; stromal components 3, 8 and 12; and components 5 and 14, neither of which could be attributed to tumor

or stromal cells. Bottom: Expression levels of selected genes.

(D and E) RPPA antibodies (D) andmiRNAmature strands (E) that were differentially abundant across themRNA subtypes. Barplots show SAMmulticlass scores,

with higher scores indicating antibodies ormiRNAs that weremore variable across the subtypes. Text lists give the genes/antibodies andmiRNAswith the largest

20 multiclass scores (see Tables S2.17 and S2.18).
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Figure S5. Noncoding RNAs and Regulons, Related to Figure 4

(A) miRNAs that were differentially abundant across the messenger RNA subtypes, shown as contrasts from a SAM multiclass analysis, for a subset of miRNAs

that were highly ranked as differentially abundant in a SAM multiclass analysis. Subtypes are: P, luminal-papillary. I, luminal-infiltrated. L, luminal. B, basal-

squamous. N, neuronal.

(B) lncRNAs that were differentially abundant across the lncRNA subtypes, shown as a heatmap of contrasts from a SAM multiclass analysis for a subset of

lncRNAs that were highly ranked as differentially abundant.

(C) miRNAs that were differentially abundant across the miRNA clusters, shown as contrasts from a SAM multiclass analysis, for a subset of miRNAs that were

highly ranked as differentially abundant.

(D–G) Regulon analysis for 23 BLCA-associated regulators (see STAR Methods: Regulon analysis: Candidate regulators).

(legend continued on next page)



(D) TCGA MIBC cohort (L to R): for the transcription factorsGATA3 andGATA6, sorted profiles of differential enrichment score (dES), with a subset of covariates

for the score-sorted cohort, and a Kaplan-Meier plot for sample groups that have activated versus repressed regulon activity or status.

(E) As (D), but for the NMIBC/MIBC Sjodahl cohort (n = 308) (Sjödahl et al., 2012), using predicted regulon targets identified in the TCGA cohort.

(F and G) Cox multivariate survival analysis of regulons, with stage, age and gender, assessed in (F) the TCGA cohort and (G) the Sjodahl 2012 cohort, using

predicted regulon targets identified in the TCGA cohort. Hazard ratios with 95% confidence intervals.

(H) Statistical significance of variation in regulon activity scores (dES) across mRNA, lncRNA and miRNA subtypes. Barplots show -log10 of Bonferroni-corrected

(n = 23) Kruskal-Wallis p values.



Figure S6. RPPA Proteomics Analysis for 343 BLCA Samples and 208 Antibodies, Related to Figure 2

(A) Consensus matrix for five unsupervised clusters.

(B) Normalized abundance heatmap. Arrows mark selected proteins that are differentially expressed in certain clusters. Covariate tracks show unsupervised

subtypes for mRNA, lncRNA, miRNA and MSig mutational signatures. Collapsed RNA-seq tracks are shown for two carcimoma-in situ (CIS) gene sets.

(C) Kaplan-Meier curves for overall survival for the five clusters, censored at 5 years.

(D) Distributions of pathway scores, with p values from Kruskal-Wallis tests.



Figure S7. Univariate and Multivariate Survival Analysis, Related to Figure 6

(A) Kaplan-Meier plots for the 14 covariates that were statistically significant in univariate calculations (BH-corrected log-rank p < 0.05) and were retained for

multivariate analysis. The number of curves in each plot corresponds to the number of categories used in univariate calculations (Table S2.27, columns E,

Values_Detailed, and F, Values_Recoded). mRNA subtypes 1 to 5 correspond to 1, luminal; 2, luminal-infiltrated; 3, basal-squamous; 4, neuronal; and 5, luminal-

papillary. For lncRNA, miRNA, mRNA and Mutational Process, reference variables were the subtype with the best survival.

(B) Time-dependent area-under-the-curve (AUC) curves for nine candidate penalized regression methods, for the full model. For lncRNA, miRNA, mRNA and

Mutational Process, the reference variable set was the subtype with the best survival.

(C) Forest plots for multivariate Cox regressions for age, AJCC stage, and mRNA, lncRNA, miRNA and MSig subtypes, with the reference variable for each

covariate set to the best-survival subtype. Main effects are shown as hazard ratios with 95% confidence intervals.
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