Search

James Landers

Landers, James P.

Primary Appointment

Professor, Chemistry

Education

  • BS, Biochemistry, University of Guelph
  • PhD, Biochemistry, University of Guelph

Contact Information

PO Box 400319
Telephone: 434-243-8658
Email: jpl5e@virginia.edu

Research Disciplines

Biophysics, Biotechnology, Chemistry, Mechanical and Aerospace Engineering

Research Interests

Bioanalytical Chemistry on Microchips

Research Description

Almost every aspect of the biochemical, biomedical and clinical sciences involves separation of species in complex matrices. Electrophoresis has been a benchmark technique for separation and characterization of biologically-active species. Instead of using conventional slab gel electrophoretic approaches, electrophoresis in micron-scale capillaries using applied fields as high as 30,000 volts, results in unprecedented resolution with unique selectivities and short analysis times. As a result of the microscalar nature of the capillary, only microliters of reagent are consumed by analysis with only a few nanoliters of samples injected for analysis. These characteristics, as well as the ability for on-line detection with laser-induced fluorescence sensitivities in the attomole (10-18 moles) range, made capillary electrophoresis (CE) appealing as a replacement for electrophoretic gels in the biomedical and clinical arenas. We have demonstrated the potential impact of CE on clinical diagnostics through the development of new CE-based assays for measuring kidney function, detecting multiple sclerosis and viral infections, screening for lymphoma, as well as for diagnosing drug abuse and alcoholism.

While the diagnostic impact of standard CE technology is clear, an alternative platform for electrophoresis in microscalar structures has evolved in the form of microchip electrophoresis. The use of microfabricated glass devices containing etched capillary-like channels provides an electrophoretic platform akin to CE but with more flexibility. "Microchip electrophoresis" allows for analysis times to be decreased by an order of magnitude over times achievable by CE (as fast as 10-200 seconds) and two orders of magnitude faster than gel electrophoresis. This provides obvious value to clinical diagnostic laboratories in terms of more rapid turn around time and capability for high throughput screening. We have demonstrated this with the detection T-cell and B-cell lymphoma in a separation remarkably faster than with conventional means.

With a program focused on the application of miniaturized electrophoretic technology to the clinical and forensic sciences, our current efforts involve broadening the scope of applications for microchip technology. This involves addressing issues associated with integrating functions other than 'separation' onto microchips. For example, we are focused on defining approaches for integrating DNA sample preparation into microchips. PCR amplification of DNA carried out using infrared-mediated thermocycling for rapid on-chip amplification and rapid DNA extraction using microchamber-bound solid phases are two examples of our integration efforts.

The successful integration of DNA extraction and amplification will lead to the development of an "Integrated Diagnostic" or ID-chip, which we ultimately hope will improve laboratory medicine. Efforts are also underway to 1) define better detection systems using acouto-optic technology, 2) develop multichannel devices for high-throughput analysis using this optical technology, 3) explore proteomic aspects of disease using multi-dimensional microchips for protein separations, and 4) apply the relevant methods to forensic applications.

Selected Publications