Scientists, including two University of Virginia researchers, have developed a powerful, inclusive new tool for genomic research that boosts efforts to develop more precise treatments for many diseases by leveraging a better representation of the genetic diversity of people around the world.
The new tool will allow researchers to compare natural variations in our genes against genome sequences collected from a diverse group of people. Until now, scientists have compared these variations with a “reference genome” primarily sequenced from a few volunteers (about 70% from one person) living near laboratories involved in the Human Genome Project almost 20 years ago.
The new software tool, called “Giraffe,” enables the use of a reference point that is far more diverse and inclusive. Instead of relying on a single reference genome, Giraffe uses a “pangenome” that incorporates information about genome sequences from people around the world. This will give scientists a much more global perspective and help them understand why diseases often strike certain groups disproportionately.
“A major advantage of Giraffe is that it enables fast and sensitive comparison of short-read human genome sequences to a pangenome, which is essential for the widespread use of reference graphs that reduce bias in the human genome reference,” said researcher Stephen S. Rich of the UVA School of Medicine’s Center for Public Health Genomics.
“Since the current effort in genomics is to move from a European-Caucasian base to a global representation, Giraffe can better define genetic variation in non-white populations and, as a result, have a major impact on precision medicine and application to understanding the genetic risk of disease.”
Read the full UVA Today article here and the published research in Science here.
Comments