Research Opportunities

  • Adenoid Cystic Carcinoma

  • Timothy Bullock, Ph.D., Laboratory Interests

    Tumor immunotherapy.  Under the umbrella of the Human Immune Therapy Center, our laboratory seeks to gain a greater understanding of the interactions between the immune system and tumors.  We are particularly interested in how CD4+ “helper” T cells and dendritic cells (which are responsible for activating T lymphocytes) contribute to the immunological control of tumors.  Our studies are intended to help develop vaccines against tumors.

  • Robin Felder, Ph.D., Laboratory Interests

    I.  High Blood Pressure (hypertension) and Blood Pressure Sensitivity to Salt

    Our research team consists of the Principal Investigator, Dr. Robin A. Felder (Pathology), co-investigator Dr. Robert M. Carey (Endocrinology), and co-investigator Dr. Pedro A. Jose (Pediatrics, Georgetown University, Washington, D.C.) and over 50 M.D.s, Ph.D.s, students and technologists that are studying the interaction between two regulatory pathways (dopamine and the renin angiotensin system) with key roles in kidney function and blood pressure regulation.  Our current program project grant is focused on investigating how the kidney regulates sodium transport and blood pressure through shared and independent molecular, cellular, and physiological pathways.

    II.   Medical Automation and Robotics

    The Medical Automation Research Center focuses on developing new automation technologies that improve the efficiency, safety and relevance of medical care.

  • Adam Goldfarb, M.D., Laboratory Interests

    Mechanisms of differentiation in hematologic cell lineages.

  • Hui Li, Ph.D., Laboratory Interests

    Since its discovery, gene fusions have been viewed as unique features of cancer and they all result from chromosomal translocation. Our recent findings have turned this dogma “on its head.” We have shown that the fusion products can be present in normal cells and they can be made through a mechanism that doesn’t require DNA translocation. Precursor mRNAs from separate genes can be joined by “trans-splicing” and the chimeric RNA can then be translated into fusion protein. The lab is now working on finding more examples of “trans-splicing.” For that, we are taking two approaches: 1. candidate gene approach which involves stem cell culture and differentiation 2. genome-wide search approach which relies on bioinformatics analysis and deep sequencing technology.

    Second focus of the lab is related to some recent findings of Genome-Wide Association Studies (GWAS). People have used the technology to find single nucleotide polymorphisms (SNPs) associated with higher or lower risks of many phenotypes including prostate cancer, diabetes, inflammatory bowl disease, even body height. The problem is that the studies often identify a lot of SNPs with no significant relative risks. What’s more, the SNPs are often located outside of the coding region of any gene. The gene we are studying has several SNPs that have been demonstrated to give carriers high risk for type 2 diabetes and lower risk for prostate cancer. We have shown the risk allele for diabetes is associated with higher expression level of the gene and knocking out the gene in mice has a protective effect against type 2 diabetes. We are now working to characterize the metabolic phenotype of the knockout mice and evaluate them for the risks of prostate cancer

  • John Lucky, M.D., Ph.D. Laboratory Interests

  • Mani Mahadevan, M.D., Laboratory Interests

    Pathogenesis of myotonic muscular dystrophy.
    Skeletal and Cardiac Muscle Biology.
    RNA metabolism.
    Mouse models of human disease.
    RNA toxicity as a new paradigm for disease pathogenesis.

  • James Mandell, M.D., Ph.D., Laboratory Interests

    Molecular signals involved in the triggering and maintenance of astrogliosis, the ubiquitous reaction of astrocytes to neural damage.

    1. Conditional knockout approaches to study roles of ERK and p38 MAP kinase pathways in astrogliosis.
    2. Functional interactions of MAP kinases with the astrocyte intermediate filament cytoskeleton
    3. Dynamic imaging of glial cell motility in in vivo models of injury
    4. Investigation of novel tissue biomarkers for diagnosis of astrocytomas, including applications of phosphorylation state-specific antibodies
  • Kenneth Tung, M.D., Laboratory Interests

    Factors responsible for immunological self tolerance and autoimmune disease development. Focus is on 1) regulatory T cell response to endogenous self antigens, and 2) mechanism of autoimmune inflammation

  • Scott Vande Pol, M.D., Ph.D., Laboratory Interests

    How viruses, particularly papillomaviruses, can cause cancer.