Biophysics & Structural Biology
Biophysics
Research in Biophysics at UVA utilizes quantitative approaches to understand the physical and chemical basis of complex biological processes. Biological processes are studied at every level and across many fields, from the theoretical to the experimental.
The Biophysics Graduate Program at the University of Virginia is one of the oldest in the country. We employ a wide range of experimental and computational approaches in a highly interactive and multidisciplinary environment. One of our strengths is in the study of membranes, which are of fundamental importance for biological systems. Membranes compartmentalize the cell, thereby controlling the internal cellular environment. They are sites for energy transduction and signaling. Finally, many regulatory processes take place at membrane surfaces.
Students in biophysics at UVA gain a strong foundation in biophysical approaches and analysis through innovative research and didactic coursework.
Structural Biology
Research in Structural Biology at UVA seeks to acquire a thorough understanding of biological function by gaining a detailed knowledge of the structure of the macromolecules that comprise the machinery of life.Students interested in Structural Biology pursue research designed to determine the 3D structures of proteins and nucleic acids using a variety of methods, including nuclear magnetic resonance spectroscopy, x-ray crystallography, electron microscopy, and electron paramagnetic resonance spectroscopy. Through the use of these different structural methodologies, we are able to gain unique and complementary information about the structure of macromolecules. These structures, in turn, provide important insights into the molecular basis of function and provide a framework for the design of experiments to address biological processes involving the macromolecules under investigation. Structures of medically relevant targets can also play a critical role in accelerating the process of drug design through the use of structure-based lead compound discovery.
Structural biology laboratories at the University of Virginia have established strengths in integral membrane proteins, structural genomics, cell signaling factors, as well as macromolecular assemblies such virus particles and filaments.
Faculty
Ai, Huiwang
Molecular Biosensors; Spatiotemporal Regulation of Biological Signaling; Protein Engineering for Imaging, Diagnostics, and Therapeutics
Auble, David T.
Molecular Mechanisms of Transcriptional Regulation
Barrett, Paula Q.
Regulation of low-voltage activated T-type Ca2+ channel activity by kinases and heterotrimeric G-proteins and their roles in physiological responses.
Bekiranov, Stefan
Physical Modeling of Microarray Hybridization; Analysis of Genomic Tiling Array Data; Bioinformatics; Computational Biology; Regulatory Networks
Bourne, Philip E
Data Science
Bushweller, John H.
Drug Development Targeting Transcription Drivers in Cancer; Structure/Function Studies of Transcription Factor Drivers in Cancer
Cafiso, David S.
Molecular Mechanisms for Membrane Transport and Cell Signaling
Columbus, Linda
Biophysical Chemistry: Membrane protein structure, function, and dynamics
Derewenda, Zygmunt S.
Structure-function relationships in proteins
DuBay, Kateri
The design of self-assembling nanomaterials
Egelman, Edward H.
Structure and Function of Macromolecular Complexes Using Electron Microscopy
Felder, Robin A.
Clinical Chemistry and Toxicology. Medical Automation Research. Neurotransmitters, cell surface receptors and intracellular second messengers.
Ford, Roseanne M.
Bacterial attachment and biofilms, microbial transport in porous media
Gahlmann, Andreas
Super-resolution fluorescence imaging of bacterial cells
Guo, Lian-Wang
Pathophysiological mechanisms and impact of cell state transitions
Harris, Tajie H.
Immune response to infectious disease in the CNS
Hsu, Ku-Lung
Chemical Biology, Lipid Biochemistry, Medicinal Chemistry, and Mass Spectrometry
Hunt, Donald F.
Analytical Biochemistry
Jomaa, Ahmad
Localisation of nascent proteins to sub-cellular compartments
Kasson, Peter M.
Physical mechanisms of infectious disease; influenza infection; membrane fusion; antibiotic resistance; molecular dynamics simulation; machine learning.
Kedes, Dean H.
Human Herpes virus associated with malignancy, including Kaposi's Sarcoma
Keller, Raymond E.
Cellular and molecular mechanisms of morphogenesis
Landers, James P.
Bioanalytical Chemistry on Microchips
Leitinger, Norbert
Role of lipid oxidation products in inflammation and vascular immunology in atherosclerosis and diabetes
Levental, Ilya
Composition, Biophysics and Physiology of Cellular Membranes
Lu, Xiaowei
Wnt/PCP signaling in inner ear development Mouse models for human deafness Wnt/PCP signaling in neural tube closure
Minor, Wladek
Structure-Function Relationships in Macromolecules; Infectious Diseases and Drug Discovery; Bioinformatics and Big Data; Scientific Reproducibility
Nakamoto, Robert K.
Structure-Function of Active Transporters
Papin, Jason A.
Systems biology, infectious disease, cancer, toxicology, metabolic engineering
Patel, Manoj
Understanding the cellular mechanisms by which seizures are initiated in SCN8A epileptic encephalopathy (DEE13) and temporal lobe epilepsy. My lab uses a number of experimental techniques including patch clamp electrophysiology and in vivo seizure monitor
Peirce-Cottler, Shayn M.
Tissue Engineering and Regeneration, Computational Systems Biology, Vascular Growth and Remodeling, Stem Cell Therapies
Perez-Reyes, Edward
Exploring epilepsy circuits then preventing seizures using gene therapies. Developing drug-inducible genetic switches for insulin replacement gene therapies.
Pompano, Rebecca
Bioanalytical tools for inflammatory disease
Pornillos, Owen
Structure and assembly of HIV, virus/host interactions, structural biology of the innate immune system
Redemann, Stefanie
Chromosome segregation and aneuploidy in meiosis and mitosis
Rekosh, David M.
Human Immunodeficiency Virus Gene Expression; Human Endogenous Viruses; SARS-CoV-2 Protein Trafficking; Post-transcriptional Gene Regulation
Saucerman, Jeffrey J.
Roles of complex signaling networks involved in the regulation of cardiovascular function and disease
Sheynkman, Gloria M.
Proteoform Systems Biology: proteogenomic approaches to uncover the role of proteomic variation in human disease
Somlyo, Avril V.
Novel signal transduction pathways in smooth muscles that regulate contractility and impact diseases of the vasculature, airway and gastrointestinal tract.
Sonkusare, Swapnil
Identify the calcium signaling abnormalities that lead to vascular dysfunction and blood pressure elevation in cardiovascular disorders
Sontheimer, Harald
Role of Glia in Neurological Illnesses and Cancer
Stukenberg, P. Todd
Mechanisms of chromosome segregation in Mitosis and generation of Chromosomal Instability in tumors
Swami, Nathan
Molecular and bioelectric devices; tissue regeneration.
Tamm, Lukas K.
Biomembrane Structure and Function; Cell Entry of Enveloped Viruses; Neurosecretion by Exocytosis; Structure of Bacterial Pathogen Membrane Proteins; Lipid-Protein Interactions
Venton, B. Jill
Analytical Neurochemistry; Dopamine and Serotonin Neurotransmission in Drosophila; Mechanisms of rapid adenosine signaling in rodents
Wiener, Michael C.
Structure/function of integral membrane proteins; structural biophysics; enzymology and virology of ZMPSTE24; sparse-constraint structure determination; technology development
Williams, Mark B.
Design, Development and Optimization of Medical Imaging Technologies
Yeager, Mark
Cardiac Gap Junction Membrane Channels / Integrins Water Channels / Rotavirus / Reovirus / Retrovirus
Zang, Chongzhi
Bioinformatics methodology development; Epigenetics and chromatin biology; Transcriptional regulation; Cancer genomics and epigenomics; Statistical methods for biomedical data integration; Advanced machine learning; Theoretical and computational biophysic
Zimmer, Jochen
Transport of biopolymers across biological membranes with a particular interest in polysaccharide and protein translocation.