Search

R. Andrew Taylor, MD, MHS

R. Andrew Taylor, MD, MHS

professional headshot photograph of Andrew Taylor wearing a suit with a dark background

Professor of Emergency Medicine
Vice Chair of Research and Innovation

P.O. Box 800699
Charlottesville, VA 22908-0699
Phone: (434) 924-8485
Fax: (434) 924-2877
E-mail: KQC5MK@uvahealth.org

Education

  • MHS (Informatics Focus), Yale University School of Medicine (2015)
  • Fellowship, Emergency Ultrasound, Yale University (2010)
  • MD, Medicine, Emory University School of Medicine (2007)
  • BS, Physics, University of Mississippi (2003)

Clinical and Research Interests

  • AI & machine learning research
  • Biomedical informatics and data science
  • Biostatistics

Current Grants

Recent Publications

Google Scholar

Publications
  • Taylor, R. A., Sangal, R. B., Smith, M. E., Haimovich, A. D., Rodman, A., Iscoe, M. S., … & Declan, A. Leveraging artificial intelligence to reduce diagnostic errors in emergency medicine: Challenges, opportunities, and future directions. Academic Emergency Medicine.
  • Andrew Taylor, M.D., M.H.S., Chris Chmura, R.N., Jeremiah Hinson, M.D., Ph.D., Benjamin Steinhart, M.S., Rohit Sangal, M.D., M.B.A., Arjun K. Venkatesh, M.D., M.B.A., M.H.S., Haipeng Xu, M.S., Inessa Cohen, M.P.H., Isaac V. Faustino, M.S., and Scott Levin, Ph.D. Impact of Artificial Intelligence–Based Triage Decision Support on Emergency Department Care.Published February 27, 2025 NEJM AI 2025;2(3) DOI: 10.1056/AIoa2400296
  • Hinson, J.S., Taylor, R.A., Venkatesh, A., Steinhart, B.D., Chmura, C., Sangal, R.B. and Levin, S.R., Accelerated Chest Pain Treatment With Artificial Intelligence–Informed, Risk-Driven Triage. JAMA Internal Medicine.
  • Huang, T., Safranek, C., Socrates, V., Chartash, D., Wright, D., Dilip, M., Sangal, R.B. and Taylor, R.A., Patient-Representing Population’s Perceptions of GPT-Generated Versus Standard Emergency Department Discharge Instructions: Randomized Blind Survey Assessment. Journal of Medical Internet Research26, p.e60336.
  • Gilson, A., Chartash, D., Taylor, R.A. and Hart, L.C., 2024. Computationally derived transition points across phases of clinical care. npj Digital Medicine7(1), p.151.
  • Socrates, V., Huang, T., Ai, X., Fereydooni, S., Chen, Q., Taylor, R.A. and Chartash, D., 2024, August. Yale at “Discharge Me!”: Evaluating Constrained Generation of Discharge Summaries with Unstructured and Structured Information. In Proceedings of the 23rd Workshop on Biomedical Natural Language Processing(pp. 724-730).
  • Hinson JS, Levin SR, Steinhart BD, Chmura C, Sangal RB, Venkatesh AK, Taylor RA. Enhancing Emergency Department Triage Equity With Artificial Intelligence: Outcomes From a Multisite Implementation. Annals of Emergency Medicine. 2024 Nov 20
  • Huang, T., Socrates, V., Gilson, A., Safranek, C., Chi, L., Wang, E.A., Puglisi, L.B., Brandt, C., Taylor, R.A. and Wang, K., 2024. Identifying incarceration status in the electronic health record using large language models in emergency department settings. Journal of Clinical and Translational Science8(1), p.e53.
  • Haimovich, A.D., Burke, R.C., Nathanson, L.A., Rubins, D., Taylor, R.A., Kross, E.K., Ouchi, K., Shapiro, N.I. and Schonberg, M.A., 2024. Geriatric End-of-Life Screening Tool Prediction of 6-Month Mortality in Older Patients. JAMA Network Open7(5), pp.e2414213-e2414213.

Google Scholar

Publications